
Making Games in Phaser and Glitch using Game Design
Patterns

Table of contents

OPENING SCENE

Introduction

JUMPING RIGHT IN

Jumping Right In

Choose your own Adventure

CORE GAME PARTS

Building a World

Create a Game Space

Adding Movement

Adding a Reward

Hazards and Enemies

HOW OUR GAME FITS TOGETHER

Understanding our Game Structure

GAME MECHANICS

Game Mechanic: Add Moving Enemies

Game Mechanic: Jumping on Enemies

Game Mechanic: Add a Countdown Timer

Game Mechanic: Longer Jumps if Holding Jump Down

Game Mechanic: Smaller Sprite Collision Boxes

Game Mechanic: Extra Lives

Game Mechanic: Player Health

ADDING POLISH

Polish: Adding our Own Sound Effects

Polish: Add Animation to your Character

Polish: Add Soundtrack Music

Polish: Animate Sprite when Zapped

Polish: Screen Shake

Polish: Explosions using Particles

GAME SPACE

Game Space: Add your own Background

Game Space: Add Game Over Screen

Game Space: Extending the Game Size

Game Space: Scaling Sprites

Game Space: Adding Levels

Game Space: Keys and Doors

Game Space: Create a Cut / Opening Scene

Game Space: Adding Levels with Json

OPENING SCENE

Introduction
Learning to code can be like a tricky puzzle to solve. At times you get stuck. It helps to have a
project you really want to get working. In this book creating a Retro Platform Game is that
project. Part one of this book is a structured start covering the basics. Part two encourages you
to choose your own adventure, offering you a choice of many missions with supporting working
code examples. This lets you add new features, complexity and style to make the starting game
into your own designed game experience.

We will make our games on the web in a code playground called Glitch.com. This means that we
can easily share our coding creations as part of web pages. You can get your friends and family
to play and test the games you create.

What this Book is and isn't

This book is:

• a great way to get started making a simple 2D arcade style game
• a fun way to find out about the basics of the coding process
• an introduction to Javascript and some of the ways it does things

• a partner guide to support more hands-on collaborative workshops

This book has limits! It's a short book that you can progress through quickly. Here are some of
the things that we don't cover;

• Advanced 3D approaches to game making or any role playing elements
• Systematic ways to learn a programming language (we pick up concepts when we need

them)
• Complete guide to the most advanced approaches to writing game using the Phaser code

library

How we learn is described in more detail in a chapter in the Appendix. In a nutshell. We learn
by diving into the process of making games by tinkering with a simple (but slightly broken)
grid game. Then you have the choice of either following a short course which covers the bare
minimum of platform game or to keep tinkering/remix the grid game by choosing from a list of
options to alter and extend it.

Playful group learning processes

This guide was offered originally as a support to group work. As such, it contains group starter
and reflection activities. These are included at the end of this book in the appendices, so as not
to interfere with the flow of someone working through this book to teach themselves.

Making Games on the Web using Glitch

This book uses Glitch our working and learning space for games. At Glitch.com you have an
editing area for your code on one tab of the browser and a preview area on another tab. We can
also see our code side by side. This kind of website is called a Code Playground. Using Code
Playgrounds skips having to set your own website and importantly they let you type in some
web code and you can see a preview of the resulting webpage immediately. This quick feedback
is great for beginner coders. We can see straight away when we have something right or when
we have made a mistake that need correcting.

http://write.flossmanuals.net/learn-javascript-with-phaser/how-we-learn-javascript-in-this-book/

Making Games using Phaser

Phaser is a Javascript library which supports the creation of web games. Real game developers
made it and other game developers use it. It's also a great choice to make retro games. Retro
games have come back into fashion. They are fun and easy to play on home computer, consoles
and especially on your phone. Parents play them with children and they are a great way to start
learning how to make digital games.

This book will help you create a game in a step by step way adding different game features
along the way. It is inspired by and guided by some great tutorials that are out there on various
websites. Particularly the work of Richard Davey at Phaser, end3r, Belen Albeza and Chris Mills
at Mozilla and Thomas Palef at lessmilk.com.

Why Javascript for beginners?

Javascript is great learn as it is the language of the web. But even fans would admit that
learning Javascript can be tricky and there are lot so different ways to do the same thing. A lot
of beginner text coders and teachers stick to Python or other text code languages that are easier
than Javascript. You can also avoid text code completely if you want to make games. Kodu,
Scratch and Game Star Mechanic use a visual approach to coding games, where you snap
together colour coded blocks. However, we think that the combination of tools like Phaser and

Glitch and a supportive community of learners bring the use of this authentic language within
grasp of beginners.

About the Phaser Community and Games

Richard Davey is the lead coder on the Phaser project. There are two main versions of Phaser in
use. Phaser 2 and Phaser 3. This book looks at Phaser 2, as it is easier to start to learn. One thing
that the community of people using Phaser to make games is very good at is sharing how they
do it and helping others who get stuck. There are some fantastic resources available for free. A
lot of these resources are available on the main Phaser website.There is also an online forum
for when you get stuck as well here - http://www.html5gamedevs.com/forum/14-phaser-2/

There are some great games out there made with Phaser which we can look to for some
inspiration. Here are a few of our favourites.

Dork Squad: Can you (and a partner) save the world from robots? Have you got what it takes?
https://eoinmcg.itch.io/dork-squad

Grooow: Platformer game with puzzle elements! Pick up all the dots to advance to the next
level. But be careful! The more you pick up, the heavier and bigger you get, and thus it'll be
more difficult to move and jump! https://ladybenko.itch.io/grooow

Cybertank: Guide the tank through the levels to collect the cubes and escape. Great sounds and
retro graphics here. http://cybertank.paulp.ws/

Knife Hit: This game is created as part of a fantastic tutorial. It's a bit advanced for beginners
but is definitely worth checking out. https://www.emanueleferonato.com/tag/knife-hit/

https://www.emanueleferonato.com/tag/knife-hit/
http://cybertank.paulp.ws/
https://ladybenko.itch.io/grooow
https://eoinmcg.itch.io/dork-squad
http://www.html5gamedevs.com/forum/14-phaser-2/

JUMPING RIGHT IN

Jumping Right In
To get started, let's alter the graphics and game-play of a game that has already been made.
This will help us to see some of the code involved before we have to start writing our own. This
idea is to make the whole process seem less scary, by making quick changes which we can see
the impact of. Like in a game, this quick feedback gives us a sense of control.

Getting started with the Glitch.com Codeplayground

We are just about to use Glitch to play and mess around with games. Here are a few things to
help you get started.

• You can hit the Fishes in the game playing window and choose Remix on Glitch to
make a new copy of this game so you can make your own changes (only do this once!)

• The JS file with the game code should show by default but click on game.js in the list of
files on the left if it doesn't

• After making your changes, click on Show Live and your browser will open a new tab
allowing you to play again with the updates

• Keep the two tabs open and swap between the code view and your game view to make
more updates

• Once you have started working, if you lose your code page then you can click on the
Fishes and select View Source to make more change

Have a play with a simple platform game

Play this game using the cursor keys to move - https://grid-game-template.glitch.me/

You may notice that the game is impossible. It is. But the good news is we can fix it. To do
this hit the two fishes at the top right of the screen and choose Remix on Glitch. Remixing
means we create our own version of the game that we can change. You now have the following
challenges which are available as a printed document of cards here.

What follows is a list of the kinds of changes that are suggested on the cards.

Starting challenge - Change Gravity: find the gravity variable and to change the number so
that you can complete the game. To do this change the following line.

 var gravity = 500;

Starting challenge - Change Background Colour: You can Change the background colour of
the game.

 game.stage.backgroundColor = "#5699ab";

Starting challenge - Change Velocity Settings: You may think the game is a bit slow,
changing velocity lets your character moves faster to the left and the right and up when
jumping. Play with the following lines

 var velocity_x = 100;
 var velocity_y = 300;

https://docs.google.com/presentation/d/1fZYko5dL-r3RHF6NZsLyZspBE77K8XIfLgnZ2HFj58Q/edit#slide=id.p
https://grid-game-template.glitch.me/

Next level challenge - Add more hazards and coins: change the game so that there are
more hazards and coins, do this by altering the o's and h's in the grid shown in the code
example below

 // Design the level. x = platform, o = coin, h = hazard.
 var level1 = [
 " ",
 " ",
 " o ",
 " h ",
 " xxxxx ",

Next level challenge - Make your own pixel art: see the help section below for how to use
piskel and import those images into your game.

Next level challenge - change the platform layout: change the platform layout of the game
to make it more challenging alter the x's in the grid code show below

Boss level challenge - Balance your game: - Use all your knowledge of velocity and gravity
and the placement your platform, hazard and coins to make a challenging game that is still
possible to beat

Create your own characters

We can use a online sprite / pixel art editor to add our own characters. There are many tools
you can use but let's use an online editor called Piskel. You don't have to log in but it can be a
good idea to do so you can save your work. To get started point your browser to
https://www.piskelapp.com/ and click on Create Sprite.

When you create your sprite, by default it creates one 32 pixels high and 32 pixels wide. This
is perfect for our game.

https://www.piskelapp.com/

Piskel is a pretty intuitive tool to use so we're not going to give you full instructions for how to
make your character here. But here are a few tips.

1. In your tool bar on the left, you can select the different icons to draw and edit your
images.

2. You can change the size of your drawing tool by clicking on the different sized squares
above the toolbar.

3. You can change the colour of your drawing tool by clicking on the block of colour below
the tool bar

4. It is possible to create animated sprites by clicking on Add new frame or duplicating
your existing frame

Let's start with a one frame static Sprite. When you are happy with the single frame you have
created we are going to export it. Click on the export icon - a mountain - on the right.

We are going to export a PNG image to a bit of code called a data URI. So click on the PNG tab
and then select the Open option under Spritesheet data-uri export.

A Data URI is a way of saving an image or other kind of data as a long-ish stream of code. It
looks kind of scary but we don't need to understand it at all. We just need to know what to do
with it. Now copy the text that appears on the screen to your computers clip board using
Control + C on your keyboard or right clicking the mouse and choosing Copy. This is our image
as data.

We are now ready to go back to the game code to add our own character. Look for the piece of
code that says:

game.load.image("player", "https://cdn.glitch.com/05027ea3-803e-
2Fplayer.png");

Replace the code between the last set of quote marks. Make sure to keep the "player" part there.
Just replace that code that is highlighted in the image below with the code you just copied. To
do this you can use Control + V on the keyboard or right click and choose Paste.

Let's see what that looks like by clicking on Show Live to see our gave. You should now see
your character as the player in the game. If it doesn't work then go back to your code and try
the process again. It is easy to make mistakes when copying and pasting like this. Part of our
job is to get used to making these kinds of mistakes and going back and fixing them.

Extra Activity

If you have more time then you can do the same process of making your own pixel art for the
following:

• replace the yellow blocks coins with your own design of a reward, a coin, star or simlar
• replace the red hazards block with an image that students have to avoid
• replace the blue blocks with your own image of a platform

Debugging your code in Glitch.com

So that's it. We have done our first bit of Javascript coding. Ok, we didn't write the game from
scratch. But a lot of coding is about adapting what someone else had done before. A lot of the
code we are going to meet can be quite readable. Take the following code.

game.load.image("player",
"http://digitalducks.org/images/ggc/player.png");

Some of the language is very similar to real English this. Here this line loads an image into the
game and gives it the name player. At the same time, somethings look quite intimidating.
There are "double quotes", normal brackets (), curly brackets{}. These do all do slightly
different things. Don't worry, we'll pick them up as we go along by looking at and writing our
code.

The Glitch website can help us if we do make a mistake and the code stops working. Imagine
you paste in some code from Piskel, it is easy to delete some code at the end - say the "); -. You
end up with the following

game.load.image("player",
"
 EUgAAAB4AAAAeCAYAAAA7MK6iAAAAKUlEQVRIie3NoQEAAAgD

This is not going to work and will give us an error, hopefully one that we we can use to help us
work out where the problem is. In this case it does give an error as shown by the red dot.

Hover over this red dot to see the full error.

In this case, there is a similar line of code following it. So to correct our code we can see how it
is different from that line and see that we need to type the missing ending code of "); If we add
that back in then we can say we have fixed a bug. Debugging is finding and solving errors in
our code.

If we have other mistakes we could try some of the following:

• reading the error message to see if it tells us what kind or error it is
• looking at the relevant line of code and comparing it to other similar ones in our

program (is there anything different/ missing here)
• if that doesn't work try going back to the original project that you remixed from, view

the source it again to see the working code and then comparing that working code your
broken code

• If you are still stuck then you can click on the << icon on the bottom left of your project
to rewind the work you have one by minutes or even days.

Choose your own Adventure
There are different ways you can use this book to learn to make your own games. Normally
books encourage you to start at the beginning and keep reading until you get to the end but this
book isn't (just) like that. The reason is that different people learn how to code and make
games in different ways. Also different people have different inspirations that keep them
interested and motivated.

This is also true of the way that people play games. There's a well known model of different
play style types by Richard Bartle. This model, which was based on observing and analyzing the
behaviors people playing together in a multi-user game, holds that there are four different
kinds of play style interests, each of which is given a descriptive name: Griefers, Achievers,
Explorers, and Socializers.1

• Griefers: interfere with the functioning of the game world or the play experience of
other players

• Achievers: accumulate status tokens by beating the rules-based challenges of the game
world

• Explorers: discover the systems governing the operation of the game world
• Socializers: form relationships with other players by telling stories within the game

world

Different kinds of games suit different play styles. One of the notable successes of recent years
have been open world games that allow you to choose how you play the game. If you want to
stick to the main missions you can follow guidance to do that but if you just want to explore or
be social or mess around you have the chance to to do that too.

In the same way there are different styles of making games. I'm proposing the following;

• Social makers: form relationships with other game makers and players by finding out
more about their work and telling stories in their game

• Planners: like to study to get a full knowledge of the tools and what is possible before
they build up their game step-by-step

• Magpie makers: like trying out lots of different things and happy to borrow code,
images and sound from anywhere for quick results

• Glitchers: mess around with the code trying to see if they can break it interesting ways
and cause a bit of havoc

Open World vs On Rails Learning

A lot of learning and guides suit the planners of this world. They start with a blank canvas and
allows you build up your game step by step explaining just about every line of code that you
add. This book does just that in the following handful of chapters, they take a structured
approach to getting to a minimal platform game and give details of coding concepts (objects,
functions, variables, loops and conditionals) in a logical order using concrete examples from
our emerging game. This approach is called building up code "From Scratch".

This book aims to support learners who like a more "Open World" approach to
learning. To do this the later sections of this book take a different approach to helping you
make games. You are encouraged to various different game features in what ever order you like.
The chapters are much shorter and designed to be self-contained. Almost like little side or
social missions that you get in great open world games. If you like experimenting you can skip
the next set of chapters and user the starting Grid Game Template2 as your jumping off point.
You can Remix this game to add in new features and looks right away. If you have been
following this book you would have done that in the first chapter.

But to help get an overview of what's there let's look in a bit more depth about what makes a
good game.

What makes up a Game?

We play them all the time but did you ever ask - What exactly is a game? How is it different
from just playing around? The Institute of play list key components that make up a game, be it
video or non-digital game. They are as follows.

• Goal: The overall goal of the game, what do you have to do to win
• Parts: What parts make up the mechanisms of playing, this could be physical, like dice

or cards, or digital like our enemies, player and other hazards
• Rules: Relationships that define what a player can and cannot do in the game.

If...then...or you may...you may not... are good sentence starters for rule making
• Challenge: Obstacles might you put in the player’s way to make reaching the goal fun

and interesting
• Space: Where the game take place and how that space affects the game
• Mechanics: The core actions or moves does the player has to do to power the play of the

game

https://glitch.com/~grid-game-template

The Institute of Play encourage you to think about these different elements of a game to allow
you to start to make your own game or to start modding or remxing an existing game.
Modding is modifying a game that already exists.

Our own Framework for Game Elements

The above framework is great for a deep analysis of how the different parts of your game
interact. Frameworks can be great to help us map our journeys. To help us do that we have a
simplified framework which has evolved looking at the different requests that our learners
make to add different elements to games.

This framework consists of Core Parts, Game Mechanics, Game Space and Game Polish. Core
parts of our game are similar, this involves the individual elements of the game and their
attributes, we may add more enemies for example. Game Mechanics in our definitions is
about what you do in the game. Where game parts are nouns and mechanics are verbs. So for
our platform core mechanics would be jumping and collecting. However some of our mechanics
are a bit more like more like extra challenges or rules, like adding a timer. So this is a fairly
wide definition of game mechanic in line with broader definition from Sicart3. Game Space
includes the design or new levels and anything that opens up space like keys and doors or
scrolling screens.

Game Polish or game aesthetics is a dimension identified as one of the four pillars of game
design by game theorist Jesse Schell 4. He makes a distinction between the mechanics of the
game, system elements that effect the core functioning of how the players interact with the
game and that of the game aesthetics. Aesthetics here are the wrapping of the game, not core to

http://www.gamification.co/2013/09/24/adapt-gamification-designs-with-jesse-schells-four-pillars/
http://www.gamification.co/2013/09/24/adapt-gamification-designs-with-jesse-schells-four-pillars/
http://gamestudies.org/0802/articles/sicart

how it works but which have an effect of the game on the emotions and state of mind of the
player. For example the flavour of the graphics and the sound design.

Adding / Changing Game Mechanics

What game mechanics can we add to our platform game? You can choose from some of the
following.

• Adding Moving Enemies: make it harder for your players to get past your enemies

• Jumping on Enemies: to make them disappear, a mechanic made famous by Mario

• Variable Jumping Heights: if you press down longer you jump higher
• Smaller Collision Boxes: If your game is too hard, you can set smaller hit boxes, lots of

platform games do this
• Add a Countdown timer: this can increase the challenge of your levels, players must

complete them before time runs out
• Extra Lives: if you touch a hazard you lose a life and have to restart with one less life

(to come)
• Adding Player Health: if you touch a hazard you lose health instead of losing a life

Adding Game Polish

Elements of Polish are often not core to how the game works as a system but the are key to how
our player reacts to our game. The following changes can help.

• Add your own Sound Effects: swapping out existing sounds and adding new ones for
example when you jump

• Add Animation to your character: make them look like they are running or jumping
• Add Soundtrack Music: have some music on a loop when game play is happening
• Animate Character when Zapped: here an animation is played when a player or

character gets zapped

• Screen Shake: mimicking a shaking screen to create a dramatic ending
• Explosion on Dying: use particles to mimic an explosion when a character dies

Changing Game Space

Here are some things you can change around the way you game uses space or give the player
the feeling of exploring space.

• Add your own Background: you can create your own pixel art or drawn background
to add to the game

• Add Game Over Screen: let your player know when they have failed!

• Scaling our Game and Sprites: this may be for aesthetic effect or could affect game
mechanics too

• Adding Levels: This can increase the challenge of our game greatly

• Extending the Game Size: if you want your game to scroll as your player moves, this is
how!

• Keys and Doors: collect keys to open previously closed doors can add as sense of
adventure to your platformer

• Create a Cut / Opening Scene: A great way to introduce rules, info about your game or
a story

• Adding Levels with Json: a neater way to create your levels and a way to find out more
about data structures.

Go On Choose your own Adventure

So go on and choose how you want to progress. As described you can start from scratch and
build up your code bit by by bit so you really understand how each part works. You can do this
by following the next chapters starting with Building a World.

Alternatively, if you like to just jump in, you can keep changing the Grid Game code, adding in
graphics and tinkering around by adding things from the examples just listed above. This page
on Glitch also lists the code examples.5

Meeting yourself in the middle

Another way to do this is to try both approaches at the same time. In this way you get all of the
fun of adding in new exciting game elements to a working game but can back this up by
following a logical structure as well. To help you make a connection between the From Scratch
approach and the tinkering with the Grid Game approach you can dive into the chapter called
Understanding our Game Structure. If may want to read that when altering the Grid Game if
you get confused when making larger changes.

1. https://www.gamasutra.com/view/feature/134842/personality_and_play_styles_a_.php
2. https://grid-game-template.glitch.me/
3. http://gamestudies.org/0802/articles/sicart

../../../../web/20210301145712/https://en.flossmanuals.net/phaser-game-making-in-glitch/adding-game-states/
http://ggc-examples.glitch.me/
http://ggc-examples.glitch.me/
https://glitch.com/~grid-game-template

4. Here's the book https://www.oreilly.com/library/view/the-art-of/9781466598645/ and
here's a summary http://www.gamification.co/2013/09/24/adapt-gamification-
designs-with-jesse-schells-four-pillars/

5. http://ggc-examples.glitch.me/

CORE GAME PARTS

Building a World

Let's get started by creating a game world and adding a player to it. Many web developers use a
cCode pPlayground to quickly and easily share a working version of their code as a webpage,
or part of a page. Using a cCode pPlaygrounds is much easier then needing your own webspace.
In some ways, all code playgrounds are similar. These tools let you type in code, and display a
preview of the resulting webpage immediately. This quick feedback is great for beginner coders.
We can immediately see when we have written something properly, and when we have made a
mistake that needs correcting. In this book, we are using glitch.com as our code playground.

Creating a Game Area

Our first job is to create a gGame aArea on a web page. To create a game area, we should decide
how big it should be on the screen, as well as its and also what shape it is.

For our project, we will be harkening back to a golden age of video consoles: the 8-bit of
Nintendo and Sega home video consoles. Game sizes are normally measured in pixels (px);
Pixels are the size of the smallest dot on the screen. Because Mario is such a well known game
character, we will use him as an example to get a sense of our game scale. Early Mario Bros.
games had a screen size of 256 px wide by 224 px high (256 x 224). Let's increase the game
size to 400 x 300 pixels, to give us a bit more room to play. Now that we know our game size,
we need to create a game space using code.

One of the great things about using a code playground is the ability to Remix the work of
others and use existing code as a template starting point. Lets give it a try. Our game will be
made up of Javascript, living within an HTML page that will link to the Phaser library and our
own Javascript game code.

To begin:

1. Go to https://glitch.com/edit/#!/baw-chapter-starting-frame?path=game.js

2. Click on the fish in the top right

3. Click Remix on Glitch. At this point you should probably also click Sign In and create an
account to save your work.

4. Add the following code into the game.js file under the line that says //start your code here

https://glitch.com/edit/#!/baw-chapter-starting-frame?path=game.js

 var game = new Phaser.Game(400, 300);

5. Click Show Live. You should see a new browser tab open and now see a black area appear on
the top left of the screen.

This may not seem like much but it's a great step forward. It means that the phaser library is
up and running in your page and has created a game space ready for us to fill with interesting
things.

We are now going to create a bit of code called an object that will give us a structure for a lot of
our most important game elements. Write the following code in game.js underneath the line
your have already written .

 var playState = {};

 var playState.preload = function() {
 };
 var playState.create = function() {
 };
 var playState.update = function() {
 };

 game.state.add("play", playState);
 game.state.start("play");

Let's explain that code a bit. The first line creates an object for the main part of our game where
we play the game. This is called the playState object. It's the only game state object we need to
worry about now but we can add a game over state and welcome state later if we want to.

The three statements after it add three functions to this object. The functions here form a
useful structure for our code allowing us to organise it. The structure is based around when
each part of the code needs to run. The sections run in the following order;

• preload: add code here to preload images and other assets for the game
• create: this code runs after preload and is where we add images and other elements to

the game
• update: this sections runs over and over again for as long as the game is playing

The last two lines add this code (a state object) to the game and say that this is the first bit of
code to run when the game starts. We will explore this more later as we start to add more
complicated code. For now we can type it and forget about it for a bit.

Adding a Player to the Game Area

We can add a player in a similar way. However as we are going to do more with our player we
need to change how we add them a bit. Add var player; above the line where you create the
playState object e.g.

 var player;
 var playState = {};

Putting this line where we declare the player variable outside of the playState object means that
all the different functions (like preload(), create() and update() will be able to work with it.
This will be useful later.

Add the following code to the preload function

 game.load.image("player", "https://cdn.glitch.com/5d318c12-590d-
47a1-b471-92a5dc0aae9d%2Fhero_stopped.png");

And the following to the create function

 player = game.add.sprite(0, 0, 'player');

Your screen should now show a player added at the top left corner. The top left of the player is
added at co-ordinates x:0 and y:0

Adding Gravity to our player

At the moment our Player is stuck at the top of our game. Normally in a platform game gravity
acts to pull down our player towards the floor. We can add gravity to the player to make this
happen. Gravity is one of the game elements that are dealt with by the Physics system. To add
physics abilities to all the game world elements add the following lines right at the start of the
create function code.

 game.physics.startSystem(Phaser.Physics.ARCADE);
 game.world.enableBody = true;

Then add the following line of code in create after where you add player to the game.

 player.body.gravity.y = 500;

Your player should now fall from the top of the screen when you run your code. Gravity works!
But the player falls all the way off the screen so it is no longer visible. This is not idea for out
game. Later will add platforms but for now we will just stop the player from leaving the screen.
We do this using the collideWorldBounds capability. Add the following line after your last one
in create function.

 player.body.collideWorldBounds = true;

The player should now stop when it falls to the bottom of the screen. If this all seems a bit basic
to you Don't Worry we are actually going great guns here! We've already got past some of the
biggest barriers to getting started making a web game.

Check your Code

If you have followed this chapter correctly should should have some code like the following
area - https://glitch.com/edit/#!/building-a-world-chapter?path=game.js

Understanding Sequencing

One of the key concepts in computer programming is the importance of the sequence of the
computer commands that you write and how they are run. In each of our functions the
computer - or code compiler more correctly - will read our code from the first line of the
function to the last. This means that it is important to make sure our code is in a logical order.
There is a good beginner resources on sequencing here -
https://www.bbc.com/bitesize/guides/zsf8d2p/revision/1

To give an example we can look at the lines of code which add

 player = game.add.sprite(0, 0, 'player');
 player.body.gravity.y = 500;

We can see here that first the player is added to the world and second the gravity value for that
player is set. What happens if we swap over the order of these two lines? Try it out put the line
with gravity above the line that adds player to the game. Then click on your Show Live tab.

Because the line setting the gravity property is before the line where the player is created it
means that there is an error. The screen appears but our player doesn't load. The message here
is that we need to have some awareness of what order we should be running different parts of
our code and to pay attention to the sequence, the order that we put it in.

https://www.bbc.com/bitesize/guides/zsf8d2p/revision/1
https://glitch.com/edit/#!/building-a-world-chapter?path=game.js

Variables and the var keyword

When coding we often create variables using the var keyword. A Variable means something we
can create and change. Variables can be used to hold different kinds of information, numbers,
words, true/false elements, and more complicated groups of elements called objects. In our
code we create several variables player and gravity are key ones.

To start using a variable we need to declare it using the var keyword. You can see that happens
with player right at the start of the code. After that we can just use player to refer to the
variable, we only use var when making it (declaring it). You may ask why do we list some
variables at the start of the code or relevant functions. This helps make our code simple to read
and understand.

Using functions and parameters

We have already written some functions in code. For the playState object we have written and
added three functions to it; preload, create and update. We create and use these functions to
help us to organise our code as they run in a particular order. The Phaser framework calls and
runs the code in these functions one after the other as the web page loads.

As well as creating our own functions, we will also meet other functions which area already
written for us that we can use. These functions are also sometimes called methods. To make
things simpler in this book we will try to use only the term function.

Phaser contains pre-written functions which are bits of code that do certain jobs for us. We can
recognise them by the use of brackets () after the name of the function being called. For
example. here look at the following code.

 game.add.sprite(0, 0, "background");

Here we use a function of game called game.add.sprite() to create and add our new variable
called player to the game object. Between the brackets we including three pieces of information
called parameters. In other words in this line of code we pass this function three
parameters.

The parameters passed to the function here are; the x co-ordinate 0, the y co-ordinate 0, and
the name of the image to add 'background'. This particular function needs these bits of
information to be able to do its job of adding the image passed to it at the right place in the
game. We'll get used to passing parameters into functions as we go along. For now just try to
be aware of these terms and try to understand how they are being used when you come across
them.

Create a Game Space

Let's add some elements to make a more realistic game space. We use the platform game genre
as that is easy to recognise and to create code for. Let's create some platforms for our player to
jump onto and some coins to collect.

Creating a Group for our Platforms and Ground

We already know how to add images to our game but when we add our platforms we are going
to do it in a way that allows us to change the properties of all the platforms at once. You will see
how this will be useful in a bit. To do this we will first create a group, and then when we create
each platform we will add them to that group. To add specific platforms we now need to follow
this pattern.

• load images in preload
• add images in create
• add them to the platforms group
• add code to make the player stand on the platform

First let's add the variable platforms to the start of our code. Change the code.

 var player;

so that it now reads

 var player;
 var platforms;

In the playState.preload function let's load up an image for ground and a platform.

 game.load.image("ground", "https://cdn.glitch.com/5d318c12-590d-
47a1-b471-92a5dc0aae9d%2Fground.png");
 game.load.image("grass:4x1", "https://cdn.glitch.com/5d318c12-590d-
47a1-b471-92a5dc0aae9d%2Fgrass_4x1.png");

At the end of our the existing code in the plaSstate.create function let's add the code which
creates a group in our game called platforms and enables body so that it can interact with other
elements in the game.

 platforms = game.add.group();
 platforms.enableBody = true;

Now let's add this code after the above to create a ground for our player to stand on

 var ground = platforms.create(0, 275, 'ground');

Try running your code at this point. You will see that when the player sinks down behind the
floor. To avoid this in playState.update: add this code

 game.physics.arcade.collide(player, platforms);

Try again and this time the player bumps the platform down out of sight. To avoid this add
another line after your last one added to playState.create:.

 ground = platforms.create(0, 275, 'ground');
 ground.body.immovable = true;

Follow this pattern to add more platforms for the player to jump on.

 var platform1 = platforms.create(150, 220, 'grass:4x1');
 platform1.body.immovable = true;

 var platform2 = platforms.create(250, 150, 'grass:4x1');
 platform2.body.immovable = true;

 var platform3 = platforms.create(75, 100, 'grass:4x1');
 platform3.body.immovable = true;

Feel free to change the location of your three platforms to make them more challenging.

Debugging Jumping

This game actually starts with a Glitch at this point that we have to fix. There is something not
right about jumping here. We can jump when ever we want. This means we can jump right up
to the top of the screen as if we were flying. This isn't what we want. We should only be able to
jump when we are touching the ground. This will be is one the rules of our game and it is
common to a lot of platform games. To make this happen we can use a conditional statement
using if.

Change the code which controls the up keyboard key to change the statement condition in the
first line to be:

 if (game.input.keyboard.isDown(Phaser.Keyboard.UP) === true &&
player.body.touching.down === true) {
 player.body.velocity.y = -300;
 }

This if statement now has has two conditions that need to be true before the code in brackets
will run. The user must be pressing the UP key and the player character must be touching
down on one of the platforms. If they are already jumping they will be in the air, and the
player.body.touching.down property will be false and the code in the conditional block won't
run.

Checking our Code

Have a look at the following Code area to check your code against what we think you should
have. https://glitch.com/edit/#!/create-game-space-chapter?path=game.js

More on conditionals

As we can see in the code controlling jumping, there can be more conditions that needs to be
true or false before a certain piece of code can run. In the last chapter we saw how the three
options of if, if else and else provide a flexible way of providing different options of code to
run depending on different user input and other conditions. Now let's look at the (condition)
part of the statement.

The process for this is known as True / False or Boolean Logic and even though we are dealing
only with different options which are all true or false it can quickly get confusing. Let's take a
simple example where were are testing if something is true. We can use the === comparison
operator to check this in our conditional testing statement. Let's say we are testing to see if it is
raining.

 if (isRaining === true){
 wearCoat();
 }

But imagine a situation where we want to check if it is raining OR if the clouds are dark. If
either is true then take a coat out. This could be checked using the || logical operator - which
means OR - to check both conditions.

 if (isRaining === true || isDark === true){
 wearCoat();
 }

However, if we want to check if it raining AND the clouds are dark and we will only then take a
coat out if both are true. This might be structured like this.

 if (isRaining === true && isDark === true){
 wearCoat();
 }

Let's look at a table from the above resource of the logical operators used here to help
understand them.

Operator Description Example

&& and (x < 10 && y > 1) is true

https://glitch.com/edit/#!/create-game-space-chapter?path=game.js

|| or (x === 5 || y === 5) is
false

! not !(x === y) is true

This is a subject that suits learning through doing, through experimenting and getting things a
bit wrong and trying out different options until you get the one you want. As mentioned
previously, there is a resource which is more complete here.
https://www.w3schools.com/js/js_comparisons.asp

Adding Movement

We are going to jump right into making our game move. You will need to have followed chapter
on Building a World and have that code ready to follow these stages. If not, see here for the
relevant code (you can click on the Fish image and then Remix on Glitch to pick up from here)
https://glitch.com/edit/#!/building-a-world-chapter?path=game.js

Moving our player around the screen

Now we have a player appear, fall to the bottom of the screen and they should now be standing
at the bottom of the game area.

https://glitch.com/edit/#!/building-a-world-chapter?path=game.js
https://www.w3schools.com/js/js_comparisons.asp

Before we start adding platforms or other characters, let's get our player to move around the
screen using the cursor keys on the keyboard. To move our player we need to start to work with
what we call player input, this is how the player of the game interacts with what is happening,
in this case we want the person playing the game player to be able to control our game player
character using the arrow keys on the keyboard.

Let's start with moving left and right. Let's add the following code to our update function.

 if (game.input.keyboard.isDown(Phaser.Keyboard.LEFT) === true){
 player.body.velocity.x = -200;
 }
 else if (game.input.keyboard.isDown(Phaser.Keyboard.RIGHT) ===
true) {
 player.body.velocity.x = 200;
 }

This seems to work up to a point. Changing the velocity.x property to 200 or -200 when the left
or right key is pressed does create movement. However the player just keeps moving even if we
are not pressing down a key. To avoid this happening we can add one more condition to our
update function.

 if (game.input.keyboard.isDown(Phaser.Keyboard.LEFT) === true){
 player.body.velocity.x = -200;

 }
 else if (game.input.keyboard.isDown(Phaser.Keyboard.RIGHT) ===
true){
 player.body.velocity.x = 200;
 }
 else {
 player.body.velocity.x = 0;
 }

This resets the velocity to zero and so stops any left right movement. Putting this at the start of
the update area means that if no key is being pressed, then this is the default behaviour. To
make our player jump we can add another couple of lines of code.

 if (game.input.keyboard.isDown(Phaser.Keyboard.UP)) {
 player.body.velocity.y = -200;
 }

Now our player can go left and right and jump. This is starting to look like a real game. You may
notice that we can jump even though we are not touching the ground. We will solve this issue
later.

Make it easy to control our speed

The velocity variables control how quickly the player moves. When we create our game we
think it is a good idea to put variables that easily change the way our game works right at the
top so it is easy to change them. We did this with gravity last time. Lets change our code around
to do this. This process of improving code that does work but could be better is called
refactoring.

In the code above our velocity.x and velocity.y is set in the body of the code. Let's create
variables called velocity_x and velocity_y right at the start of our code in our global game
variables area.

var velocity_x = 200;
var velocity_y = 300;

Now we can swap out the direct mentions of those numbers from the code in update change the
lines as follows. For the x (left and right) value do;

 if (game.input.keyboard.isDown(Phaser.Keyboard.LEFT) === true) {
 player.body.velocity.x = -velocity_x;
 }
 else if (game.input.keyboard.isDown(Phaser.Keyboard.RIGHT) ===
true){
 player.body.velocity.x = velocity_x;
 }

For the y (up and down) value

 if (game.input.keyboard.isDown(Phaser.Keyboard.UP) === true) {
 player.body.velocity.y = -velocity_y;
 }

Checking our Code

You can check what you have in your code with the the completed code for this chapter here -
https://glitch.com/edit/#!/adding-movement-chapter?path=game.js

Understanding if statements / Conditionals:

One of the key elements of games are Rules. If this happens then do that. Let's have a look at
first bit the code used to control our player.

 if (game.input.keyboard.isDown(Phaser.Keyboard.LEFT) === true) {
 player.body.velocity.x = -velocity_x;
 } else if (game.input.keyboard.isDown(Phaser.Keyboard.RIGHT) ===
true) {
 player.body.velocity.x = velocity_x;
 }

Statements here start with if, else if or else. These are also called conditional statements. The
format of the first part of a conditional (also called if - else) statement can be expressed
conversationally as "if this condition is true, then do this action". This can be represented in
code pattern as

if (condition) {
 action
}

You can see that our code is testing for three statements. This format allows us to programme a
series of possible outcomes into our game. The format here is like a list of options which the
programme runs. It is important to note that only one of the if, else if, else can run at any one
time. You should also know that there can be as many of the else if options as you want.

There is more to explain how the (condition) part of this process works in the next chapter. If
you want to follow this up to learn more about this aspect of coding then you can use some of
the many online resources that teach javascript. For example, there is more on conditionals
here - https://www.w3schools.com/js/js_if_else.asp

https://www.w3schools.com/js/js_if_else.asp
https://glitch.com/edit/#!/adding-movement-chapter?path=game.js

Adding a Reward

In the last chapter, we talked about not having a real goal for our game. In this chapter, we put
in place a reward, a goal for us to chase. In this case, it will be to collect coins.

Creating our Coin

We already know how to add images as sprites to our world. We did that with the player. Now
we need to do the same a coin.

In the preload function add the following code

 game.load.image("coin", "https://cdn.glitch.com/07341419-e9df-484f-
820f-d6799646cfcd%2F22coin.png");

Before adding any coins to the game. We are going to create a group for all of our coins
called, coins, this will be useful when we program the part of the game where the player takes
the coin. Generally we might want to create groups of objects when we want the same kind of
thing to happen to all the members in the group. In this case each time our player touches a
coin we will want that coin to disappear.

Add the following code in the create function in our code after where we add the platforms.

 coins = game.add.group();
 coins.enableBody = true;

Instead of adding all of our coins one at a time, which we can see would be quite repetitive, we
can use a loop to do the job for us. Let's add 3 coins to the screen, spaced every 100 pixels. We
will add them at the top, but then add gravity so that they fall down until they touch a platform.
To do this add the following lines after the code above.

 for (var i = 1; i < 4; i += 1) {
 var coin = coins.create(i * 100, 0, "coin");
 coin.body.gravity.y = 200;
 }

Making the coins disappear

At the moment we have something for our player to head for but when they get there, they just
overlap with the coins rather than it seeming like the player takes them. Our next stage is to
make them disappear. To do this we rely on another bit of Phaser physics which is especially
for cases like this. Add the following code at the top of your update function.

game.physics.arcade.overlap(player, coins, takeCoins);

This line will be explained at the end of this chapter but what it means is that when player and
any member of the coins group overlap then run a function called takeCoins (which we still
have to write yet). Now let's write the code that runs when that overlap happens. Add this after
the update: code has ended.

var takeCoins = function (player, coin) {
 coin.kill();
};

Checking our Code

You can check what you have in your code with the the completed code for this chapter here -
https://glitch.com/edit/#!/add-a-reward-chapter?path=game.js:1:0

Loops and Iterating

When find ourselves doing the same thing over and over again when coding, there is normally a
better way to do this. At times in this guide we do things the longer way in order to make the
code easier to read but here we use a loop when creating our coins. There are a few ways to do
this but one of the more flexible ways is to create a For Loop which takes three statements.
Here is a summary of some more detailed information on how to use a for loop here -
https://www.w3schools.com/js/js_loop_for.asp

There are three key parts of For Loop, a starting point, a way of knowing when to end the loop,
and a way of changing the loop. Let's look at a simplified example of how this is used in our
code.

 for (var i = 1; i < 4; i++)
 {
 coin = coins.create(i * 100, 0, 'coin');
 }

You can see the following pattern.

 for (statement 1; statement 2; statement 3)
 {
 code block to be executed (normally more than once
 }

Very often a for loop will follow the following convention:

https://www.w3schools.com/js/js_loop_for.asp
https://glitch.com/edit/#!/add-a-reward-chapter?path=game.js:1:0

• Statement 1 creates a variable often called i for iterator, (to iterate means to do things
more than once).

• Statement 2 sets up when the loop will end using some maths, in this case it will end
when i is no longer less than 4.

• Statement 3 runs after every loop and in this case increases the value of i by one each
time.

Each time the loop happens, the result will be different as i increases in value in each loop. If i
starts off at 1 and increases by one each time the loop runs until i is no longer less than 4, it will
run three times. Let's chart out how it will be different.

 coin = coins.create(i * 100, 0, 'coin');

The code above becomes:

1. Loop One: i = 1 : coin = coins.create(1 * 100, 0, 'coin'); - so coin created at 100,0
2. Loop Two: i = 2 : coin = coins.create(2 * 100, 0, 'coin'); - so coin created at 200,0
3. Loop Three: i = 3 : coin = coins.create(3 * 100, 0, 'coin'); - so coin created at 300,0

Making and calling functions

We added our own function to the playState object called takeCoins when the player overlapped
with any coins. This is about the most complicated bit of coding we need to do to make our first
game so let's take some time to explain what is happening.

When creating our overlap statement with the following line.

game.physics.arcade.overlap(player, coins, takeCoins);

If we are new to code then there is quite a lot going on here. Overlap() is a function with
several possible parameters. Here we are using just three. These different parameters can be
likened do different holes in a block toy.

Let's look at the specification of the overlap function.

 overlap(object1, object2, overlapCallback)

1. object1: The first object or group of objects to check
2. object2: The first object or group of objects to check
3. overlapCallback: An callback function that is called if the objects overlap.

We pass in two objects or groups, in this case the player and the the group of coins. We also
want something to happen when there is an overlap between the player and any of the coins.
This is where the overlap callback parameter comes in. We don't need to know a lot about what
a callback function is here. But in a nutshell here is a code that will run if there is an overlap
between the player and a coin. In our case it makes it disappear with the coin.kill() code.

Hazards and Enemies

We need things for our player to avoid to add some challenge to the game. In this chapter will
we learn how to create static hazards and moving enemies. Because they are both official
hazards that zap our player we will put them both in a group called hazards.

Adding an Animated Hazard

Let's add a hazard into our game a location and let's make it move. We will add a very simple
flickering flame. It consists of two frames of animation. They alternate give the flickering effect.
Here is an image of both frames, one besides the other.

To create an image like this you can use a tool like Piskel which we used in the first chapter
Jumping Right In.

To make our image animated, we will add it as a spritesheet, and specify the width and height
the frames, here 11 pixels wide and 27 high. And after that we can also load in a sound to play
when we hit a hazard. Put this code in preload:

 game.load.spritesheet("hazard", "https://cdn.glitch.com/5d318c12-
590d-47a1-b471-92a5dc0aae9d%2Ffire2.png", 11, 27);

Then add the hazard to the game. Again as with the coins in the previous chapter, we will
create a group called hazards in case we want to add more later. Add the following code to
create:

 hazards = game.add.group();
 hazards.enableBody = true;
 hazard1 = hazards.create(100, 250, 'hazard');
 hazard1.animations.add('flicker', [0, 1], 6, true);
 hazard1.animations.play('flicker');

The next stage is to make the player disappear when they touch this flickering flame hazard.
This is done in a similar way to working with the coins but in reverse. Add the following line to
update part of the code.

 game.physics.arcade.overlap(player, hazards, hitHazard);

We now need a hitHazard function to disappear our player if they hit a hazard. Take care to
follow the same pattern and to add this after the takeCoins function.

 var hitHazard = function(player,hazard) {
 player.kill();
 };

This does give us win and lose conditions, so hey presto, we have a game. But either of those
options mean we are stuck in a form of limbo, either alive with nothing to do, or you disappear

leaving only the game world. You will have to refresh the page to progress. Clearly this is not
ideal and we'll deal with that in the next section.

Restarting our Game

We need something to happen when we hit a hazard / enemy or collect all the coins. To make
things simple let's just restart the game. To restart our game when we die we're going to add a
new function called restart() to our code.

 var restart = function () {
 game.state.start("play");
 };

This restarts the currently running game state (we talk more about this later) called 'play'.
We now add a line of code to restart the game to our hitHazard() function. It should now read
as follows.

 var hitHazard = function () {
 player.kill();
 restart();
 };

We now need to restart the game when we have collected all the coins. This is a little more
complicated and involves creating a new function that goes through. To do this add the
following lines to update:

 if (coins.total === 0){
 restart();
 }

This line keep checking to see if there are any coins left and if there aren't then then it will
restart the game. Be aware that this could cause a bug. If you don't include any coins in your
game, then it will just keep restarting.

Check your Code

You can check your code against this chapters code demo here -
https://glitch.com/edit/#!/add-hazards-chapter

https://glitch.com/edit/#!/add-hazards-chapter

HOW OUR GAME FITS TOGETHER

Understanding our Game Structure

If you have been following the chapters in the first half of this book we have been building up
our game from scratch bit by bit. Otherwise you may have been adapting the Grid Game
Template and are reading this chapter to find out more about the structure of our game. You
may have been doing a bit of both. This chapter covers more detail on how our game fits
together. In the following chapters there tutorials for how to add different elements to our
game. Here we will try to bring together the two approaches so that you can continue by
dipping into the rest of the book in what ever order you want to.

How the code of the two approaches is similar and different

If you have been working your way through the chapters then the you'll understand the
code of the last chapter Adding Hazards which is here https://glitch.com/edit/#!/add-
hazards-chapter?path=game.js

Alternatively if you are adapting the Grid Game Template - then the code or that is here -
https://glitch.com/edit/#!/grid-game-template?path=js/game.js

Just about all the code that we have created "From Scratch" by following the chapters in the
first half of this book is in the "Grid Game" Template code but there are some sections of code in
the Grid Game that aren't in our From Scratch code. So let's have a look a some of the
similarities and differences.

How the code is similar

The code that we have created From Scratch has the following structure more or less.

global variables
create playState object
-->playState.preload function
-->playState.create function
-->playState.update function
-->takeCoin function

https://glitch.com/edit/#!/grid-game-template?path=js/game.js
https://glitch.com/edit/#!/add-hazards-chapter?path=game.js
https://glitch.com/edit/#!/add-hazards-chapter?path=game.js

-->hitHazard function
-->restart function
create game states
start main game state

Understanding what happens in each section of this code structure will really help us when we
start to copy and paste new sections of code from to make it easier to visualise, this structure be
mapped out as a diagram below.

If you compare the code from the Grid Game there are some extra elements that you might
want to know more about.

Adding Sounds

There are sounds which happen when you touch a coin or a hazard in the Grid Game code
which we don't have in our from From Scratch code.The process of adding in sounds is
explained in Adding your own Sound Effect. This example is for a jump sound rather than
touching a hazard or coin, but the process is the same.

Adding Levels

One of the big differences in the Grid Game code is that we have three different levels.
Comparing the code this is first clear when we see the variable currentLevel in the Global
Variables section at the start of our code.

var currentLevel =1;

Later in the code there are some key sections which create our three distinct levels. First of all
we have the grid design sections where you can change the location of the platforms, coins and
hazards. For example here are the first few lines of the design for level 1.

 // Design the level. x = platform, o = coin, h = hazard.
 var level1 = [
 " ",
 " ",
 " o ",
 " ",
 " xxxxx ",

In technical terms this level one variable now has a data structure of an array. We don't need to
know much about arrays at this level but it is worth remembering that they are useful for
doing things efficiently in combination with loop code structures. In fact that is what needs to
happen next in our code.

Next step is to send the level data to a loop to turn all of our x's, o's, and h's into platforms,
coins and hazards on the screen. We have a separate function which does this work called. Here
are the first few lines of this function, for the full version you can look at the code of the Grid
Game.

function loadLevel (level) {
 for (var i = 0; i < level.length; i = i + 1) {
 for (var j = 0; j < level[i].length; j = j + 1) {
 if (level[i][j] === "x") {
 // Create a wall and add it to the 'platform' group

Are you still paying attention? Good, because the next part is important! :)

To decide what level gets loaded there is a conditional if statement that checks what the
currentLevel variable is and then sends the right level data to the loadLevel function.

 if (!currentLevel || currentLevel === 1) {
 loadLevel(level1);
 // add extra code for just level one here

 } else if (currentLevel === 2) {
 loadLevel(level2);
 // add extra code for just level two after here

 } else if (currentLevel === 3) {
 loadLevel(level3);
 // add extra code for just level three after here
 }

So why is this so important? This is the section of your project that you will add new code into
if you want to add new things to just one level of your game. Yes it's that important that it's
right there in the code comments. There is more information on how to do this works in Adding
More Levels.

Navigating Levels

As there are several levels, there is also a way to navigate between levels. While both sections
have a similar hitHazard function which restarts the play state, there is a bigger difference in
the code that checks if there are any coins left.

 if (coins.total === 0) {
 nextLevel();
 }

This check now calls a new function called nextLevel which gets called. This function increases
the level number by one and then restarts the game

var nextLevel = function () {
 currentLevel = currentLevel + 1;
 game.state.start("play", true, false, currentLevel);
};

There are some more parameters in the line which restarts the play state. It's the last one,
currentLevel, that is important here, as we are passing the new level value along as the play
state starts. This means that level 2 will be loaded up.

And that's not all. We need to make a similar change to our restart function too.

var restart = function () {
 currentLevel = 1;
 game.state.start("play", true, false, currentLevel);
};

In this example the currentLevel value gets set back to one so you have to start from the
beginning again if you hit a hazard. Harsh!

Getting ready to Cut and Paste our Code Patches

The second half of this book has a lot of code examples which you and copy and paste into your
own project.

This process is a lot like cutting out pieces of a magasine and pasting them into a collage or
cutting our fabric patches and sewing them onto a piece of clothing. There are step by step
instructions and your the different parts of your code are a bit like a dress pattern that you cut
out and sew together.

As you start this process you are bound to make plenty of mistakes and get pretty confused, but
stick with it. As you progress you will start to notice patterns that you have followed before and
it will start to seem more familiar.

Remember, you are new at this! If you were sewing your first jacket, then normally you would
follow a pattern designed by someone else. In the same way, you also don't have to start off
making your own games from scratch, lets follow some patterns. We can still make it our own
through what patterns we choose to put together, the characters and stories we imagine, and
the graphics and sound we create.

Getting Started adding new Game Elements

As described in the chapter choose your adventure there are three main groupings for new
game elements that you can add to your project. Game Mechanics, Game Space, Game Polish.

To get started we suggest the following starter projects.

• Game Mechanic: Add Moving Enemies

• Game Mechanic: Jump on Enemies

• Game Polish: Adding your own Sound Effects
• Game Polish: Adding Animations to your Character

• Game Space: Add your own Background Image
• Game Space: Add a Game Over State

For a larger list of what's available have a look a the chapter list of this book or use this page for
a quick set of links to the code examples. http://ggc-examples.glitch.me/

If you like the process of stepping through code that someone else has created in a logical way
then I would suggest following this more advanced tutorial from Belen Albeza from Mozilla
using Kenny's graphics. I've used the ideas and the game art a lot for this example. That tutorial
is a great next step if you want to take the knowledge from this beginner book further. It is also
structured in a way more like a web professional would do it.

GAME MECHANICS

Game Mechanic: Add Moving Enemies

In this section, we'll look at adding new enemies and making them move.. To create the
movement we will use a process called tweening to do this. Our aim is to make the enemy
appear in one place, and then for it to move back and forth making it difficult to get past.

https://mozdevs.github.io/html5-games-workshop/
http://ggc-examples.glitch.me/

What we need to know and what we will do

To be able to do this step it would help if you knew about the following from this book;

• Understand the core structure of our game and sequencing - see Building a World
• Collision detection using overlap() function- see Adding a Reward
• Already set up an enemies group which kill our player if touched - see Hazards and

Enemies

Create an image for your Enemy and import it to your project

You can use a pixel art tools like Piskel or something similar to create a single frame enemy to
more around the screen. You should then export this from Piskel as a PNG spritesheet and
upload it to the assets folder of your project on glitch.com. There is help on how to upload in
Add a Background.

Going over the code

The code for a minimal example of the Moving Enemies game mechanic is shown here -
https://glitch.com/edit/#!/sgte-example-moving-enemy?path=js/game.js

This tutorial assumes you already have an enemies group and the code in update which makes
your player disappear if touched.

https://glitch.com/edit/#!/sgte-example-moving-enemy?path=js/game.js
https://en.flossmanuals.net/phaser-game-making-in-glitch/_edit/#building-a-world

Anywhere in the Playstate.preload function add the line:

 game.load.image("newenemy", "https://cdn.glitch.com/05027ea3-25db-
40c7-803e-2f710bf696a1%2Fhazard.png?1549457791750");

If you want to add your own image for this moving enemy then be sure to change the link to
the image in this line of code.

In Playstate.create function, after the code where you add the enemies group to the game, add
the lines:

 var enemy1 = game.add.sprite(370, 320, "newenemy");
 enemies.add(enemy1);

Adding our enemy to the enemies group makes sure that it follows the normal rules for our
enemy, normally that is that if our player hits the enemy something happens. Now let's start to
add some movement by adding a tween. A tween is a flexible way of controlling the properties
of our game objects that are displayed on the screen. In this case we will alter the position of
the enemy object.

Add these lines in the Playstate.create function after you have added your enemy1.

 var tween1 = game.add.tween(enemy1);
 tween1.to({x:170, y: 320}, 2000, null, true, 0,-1,true);

The tween code above will move our enemy to the position 170 pixels in from the left and 320
pixels down from the top, and it will take two seconds (2000 miliseconds) after the game starts.
When it gets there it will move back and not stop doing it. Have a play with those figures to get
the effect you want and to place your enemy where you want it to appear.

Taking it Further

To take this game mechanic further you may want to ;

• animate your enemy - see Add Animation to your Characters
• created a new sound to play when you hit this hazard - see Adding our own Sound

Effects

.

Game Mechanic: Jumping on Enemies
The game mechanic of jumping on enemies to get rid of them has been made very popular by
Mario games. It is a great way to use the jumping dynamic in a creative way. We can use the
same technique as many Mario games use to do this. An enemy will kill our player unless our
player is falling when they make contact.

What we need to know and what we will do

Our mechanic relies on us being able to check if we are jumping on our enemy. We will do this
by checking to see if our player is on the way up or coming down from a jump.

To be able to do this step it would help if you knew about the following from this book;

• Adding Physics and Gravity - see Building a World
• Collision detection using overlap() function- see Adding a Reward

Going over the code:

The code for a minimal example of the Jumping on Enemies game mechanic is shown here -
https://glitch.com/edit/#!/game-mechanic-jump-on-enemies?path=game.js

In playState.preload add a line which creates a new type of enemy.

https://glitch.com/edit/#!/game-mechanic-jump-on-enemies?path=game.js

 game.load.image("newenemy", "https://cdn.glitch.com/05027ea3-2f71-
hazard.png");

In playState.create add the following code either towards the end the function

 var enemy1 = game.add.sprite(370, 320, "newenemy");
 enemy1.type = "spider";

Have a look at the updated hitHazard function for the code that checks to see if the player is
coming down from a jump by seeing if the y axis velocity is less than 0 and if the enemy type is ;

var hitHazard = function (player, hazard) {
 if (hazard.type === "enemy" && player.body.velocity.y > 0){
// if (player.body.velocity.y > 0){
 hazard.kill();
 }
 else {
 player.kill();
 restart();
 }
};

In the code above the if statement makes checks to see if the enemy is of a type of spider. This is
because you may have other possible different hazard types might be in the group. Some might
be more static hazard types like a cactus. You can use this approach if you want to use a
different types of enemy to your game. If that is not the case then you can use the more simple
line which is commented out in the code example above.

That's it. We hope you enjoy adding this game dynamic to your game to jump on enemies.

Game Mechanic: Add a Countdown Timer
One key game mechanic of video games is to add challenge to a game by making the player
complete something within a certain time. In this section we will do this with a simple count
down timer.

What we need to know and do

Our count down timer will be visible in the top left. When it counts down to zero then it will
trigger the starting of the game over state. This mechanic using the following techniques which
are covered in more detail in other parts of this book;

• Game States - see Adding Game States
• Timer Events - see Adding Animated Game Scenes

Going over the code:

The code for a minimal example of the Adding A Timer game mechanic is shown here -
https://glitch.com/edit/#!/game-mechanic-timer?path=game.js:

Let's jump into the details, to look at the following groups of code. First add this code block
anywhere in your playState.create function

 this.timeLimit = 5;
 this.timeText = game.add.text(10, 10, "0:00");
 this.timeText.fill = "#000000";
 this.timer = game.time.events.loop(1000, tick, this);

This code block;

• defines how long the time limit will be
• adds an empty text object to the game which will be updated later
• sets the colour of the text

https://glitch.com/edit/#!/game-mechanic-timer?path=game.js:
game-mechanic-add-a-countdown-timer/Adding%20Animated%20Game%20Scenes
http://write.flossmanuals.net/learn-javascript-with-phaser/changing-game-states/

• creates a timer event object which will run the tick() function every 1000 miliseconds
(which is one second)

Now, add these functions to your game at the end of your code.

var tick = function () {
 this.timeLimit--;
 var minutes = Math.floor(this.timeLimit / 60);
 var seconds = this.timeLimit - (minutes * 60);
 var timeString = addZeros(minutes) + ":" + addZeros(seconds);
 this.timeText.text = timeString;
 if (this.timeLimit === 0) {
 restart;
 }
};

var addZeros = function (num) {
 if (num < 10) {
 num = "0" + num;
 }
 return num;
};

var outofTime = function () {

 var splatNoise = game.add.audio("splat");
 splatNoise.play();
 game.state.start("play");
}

Let's look at what is in the tick() function and a following function to add Zeros to our timer.
We can see here that every time tick is called every second it;

• reduces our time limit by one second
• then does some formatting of the time to create a easy to read number
• updates the text of our timer with the friendly version of the time coundown (using the

addZeros() function to help it)
• checks to see if the time is down to zero yet and if it does calls the restart function to

restart game
• the addZeros function just adds zeros to numbers when we need them so ten seconds is

00:10 and not 00:1

Game Mechanic: Longer Jumps if Holding Jump Down
In the game Super Mario Brothers. When Mario jumps you can make him jump for longer by
holding down the jump button. This allows for a greater feeling of control and lets you play
around with your level design to make for more complex challenges.

What we need to know and do

Our mechanic depends us writing some code to check how long the player has been holding
down the jump key and it will change the players velocity based on that value. To do this it's
helpful to know about the following game elements;

• Adding Physics and Gravity - see Building a World
• Working with player input - see Adding Movement

Going over the code:

The code for a minimal example of the Variable Jump Height game mechanic is shown here -
https://glitch.com/edit/#!/mechanic-variable-jump-height?path=game.js

In the global variable area at the start of the code see that there is a variable declared there
called jumpTimer.

var jumpTimer = 0;

In the Playstate.update function, we add code which controls the variable height of the player
jump.

 if (game.input.keyboard.isDown(Phaser.Keyboard.UP)) {
 if (player.body.touching.down && jumpTimer === 0) {
 // jump is allowed to start
 jumpTimer = 1;
 player.body.velocity.y = -300;
 } else if (jumpTimer > 0 && jumpTimer < 31) {
 // keep jumping higher
 jumpTimer++;
 player.body.velocity.y = -300 + (jumpTimer * 5);
 }
 }
 else {
 // jump button not being pressed, reset jump timer
 jumpTimer = 0;
 }

https://glitch.com/edit/#!/mechanic-variable-jump-height?path=game.js
http://write.flossmanuals.net/learn-javascript-with-phaser/adding-movement/
http://write.flossmanuals.net/learn-javascript-with-phaser/building-a-world/

The code adds an extra if statement into the game which makes a difference between if the
player has just touched the jump button or if they are pressing down on the jump button. In the
first case the jumpTimer would be at 0 and the code makes the player jump and starts the clock
on the jumpTimer variable. The next case where the button is being held down the timer value
increases is of importance in the line -- player.body.velocity.y = -300 + (jumpTimer * 5);-- and
this increase means that the players velocity is slowed down closer to 0 the longer the button is
pressed.

This solution was found at this blog post on amphibian.com which goes into more details about
the coding process.

That's it. We hope you enjoy adding this game dynamic to your game.

Game Mechanic: Smaller Sprite Collision Boxes
We can play with collision effects with body size of player / enemy which can make the game
seem fairer and more forgiving for players. This can really help if you are designing levels that
are hard and of the shape of your sprite animations sometimes creates a big box area.

Check the Code: what we need to know and do

Our mechanic relies on us being able to check if we are jumping on our enemy. We will do this
by checking to see if our player is on the way up or coming down from a jump. To do this we'll
need to know about the following game elements;

• Adding Physics and Gravity - see Building a World
• Collision detection using overlap() function- see Adding a Reward

http://write.flossmanuals.net/learn-javascript-with-phaser/adding-a-reward/
http://write.flossmanuals.net/learn-javascript-with-phaser/building-a-world/
https://thoughts.amphibian.com/2015/11/tuning-jumps-in-my-phaser-platformer.html

Going over the code:

The code for a minimal example of the Smaller Sprite Collision Boxes game mechanic is shown
here - https://game-mechanic-smaller-sprite-collision-boxes.glitch.me/

The size of or player is when we add it in the example above is 46 wide by 42 high.

Have a look at an updated create function for the code that alters the collision body box of the
player. The following code is added after the player is added to the game.

 player.body.setSize(26, 37, 5, 5);

There are four parameter here setSize(width, height, offsetX, offsetY) . We can see that we have
set a new height and width of the Body of this sprite. In this case we taken 10 pixels off each.
This does not affect how it look but does affect when it collides with other sprites.

If we don't put in the offset values for example if we use the following code.

 player.body.setSize(26, 37, 0, 0);

then that new body will be anchored at the top left. This is not ideal also. You may also notice
that they player sinks into the ground.

So let's reset this. To make this more useful to us as game designer we centered this new
collision box by using the offset values 5 and 5. In other word this shifted the box 5 px over to
the right (+5x) and five down (+5y). Our player no longer sinks into the ground and the new
collision box seems more fair.

Collision boxes and Hazards

The same technique can be applied to an enemy. The collision box has been set to be in the
bottom right of the hazard to make it very easy to jump over from left to right..

That's it. We hope you enjoy adding this game dynamic.

Bonus read: you can have a look at this great article on the more advanced ways of creating 2D
platform games.

Game Mechanic: Extra Lives
To allow our game levels to be more challenging but still give our game player a chance we can
give extra lives.

http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/
https://game-mechanic-smaller-sprite-collision-boxes.glitch.me/

What we need to know and what we will do

There is some background knowledge in this book that will be useful for us in getting this
mechanic to work;

• Adding Sprites in Groups - see Create a Game Space
• Working with Loops - see Adding a Reward
• Working with Levels - see Adding More Levels
• Understand spritesheet images - see Adding an Animated Character

You can use the following stages of this tutorial as a check list;

• Create an animated sprite which displays how many lives we have left in Piskel or
similar

• Create new variables in our list of global variables called lives and livesSprite

• Add code to our create function to check how many lives we have and display the right

• Add code to our hitHazard function to take off a life if the player is zapped and restart
the game with one less life but at the same level

http://write.flossmanuals.net/learn-javascript-with-phaser/adding-a-reward/
http://write.flossmanuals.net/learn-javascript-with-phaser/create-a-game-space/

Create an image for your Lives Indicator and import it to your project

You can use a pixel art tools like Piskel or something similar to create an image with a single
frame for each of your lives. And example is shown below.

You should then export this from Piskel as a PNG spritesheet and upload it to the assets folder
of your project on glitch.com

There is help on how to do these stages in the tutorial called Add Animation to your Characters.

Going over the code:

The code for a minimal example of the code for adding levels extra lives for your player is here -
https://glitch.com/edit/#!/sgte-extra-lives?path=js/game.js

Add a new global variable at the start of our code. It is located outside any particular function
as they are needed by more than one of our functions;

var lives = 3;

The lives variable keeps a track of how many lives we have left.

Now add this line to load in an image as a spritesheet which will change when you lose a life
into preload function.

 game.load.spritesheet("lives", "https://cdn.glitch.com/df3d4bd4-
a145-4f00-bfad-97b20729e2ee%2Fanimated%20heart.png",48,12);

You may want to create your own image which does this.

Next, in the create function add the following lines which add our lives image to the screen in
the top left and changes it depending on how many lives are left.

https://glitch.com/edit/#!/sgte-extra-lives?path=js/game.js

 livesSprite = game.add.sprite(20, 20, "lives");

 if (lives === 3){
 livesSprite.animations.frame = 0;
 }
 else if (lives === 2){
 livesSprite.animations.frame = 1;
 }
 else if (lives === 1){
 livesSprite.animations.frame = 2;
 }

Then when the play is happening and the player hits a Hazard we need to take off a life and
restart the game with one less life but at the same level. We already have a function which gets
called when our player overlaps with a hazard called hitHazard so we can add the following
code to it.

var hitHazard = function (player, enemy) {
 splatNoise.play();
 if (lives != 0) {
 lives--;
 game.state.start("play", true, false, lives, currentLevel);
 }
 else {
 lives = 3;
 currentLevel = 1;
 game.state.start("play", true, false, lives, currentLevel);
 }
};

We have a conditional statement which runs when the number of lives is more than 0. In this
case, when we start our play state there is the option to pass the value of lives and the
currentLevel along, this allows us to not start from level one.

When the lives variable reaches 0 then the second condition which resets the values of lives to
three again and resets the currentLevel variable to be 1. This has the effect of starting again.

Other ideas to extend this mechanic

Other ideas to extend this mechanic could include;

• Adding a Game Over state - see Adding Game States

Game Mechanic: Player Health Meter
The game mechanic of having a health meter which is depleted when you come into contact
with enemies and their projectiles can be very welcome if you have a challenging layout of
levels. This can stop your game from being too hard.

What we need to know and what we will do

Our health mechanic is going to build on the code we are using when our player collides with a
hazard. As such you may need to know about.

• Collision detection using overlap() function- see Adding a Reward
• Using game timers - see Hands On - Creating our Starting Cut Scene in Adding Game

States

You can use the following stages as a checklist;

• create a graphical health bar
• reduce the level of this health bar as our player gets hit

• move our player to the side of the enemy and stop their health from draining too much
all the time the player is overlapping with the enemy

• restart the game when the health bar reaches zero

Going over the code:

The code for a minimal example of the Player Health Bar game mechanic is shown here -
https://glitch.com/edit/#!/player-health-meter?path=game.js

In our create function , after we have added our player to the game, we can set the health of
our player to be a value of 100;

 player.health = 100;

Health is actually a built in property of Phaser and when that reaches zero our player will
disappear automatically. But let's add some code anywhere in our update function to check
when health is down to zero and restart the game.

 if (player.health === 0) {
 restart();
 }

Next we need to build and display the graphical health bar and this is done by calling the
following function one at the end of the create function.

var createHealthBar = function () {
 meters = game.add.group();

 // create a plain black rectangle to use as the background of a
health meter
 var meterBackgroundBitmap = game.add.bitmapData(20, 100);
 meterBackgroundBitmap.ctx.beginPath();
 meterBackgroundBitmap.ctx.rect(0, 0, meterBackgroundBitmap.width,
meterBackgroundBitmap.height);
 meterBackgroundBitmap.ctx.fillStyle = '#000000';
 meterBackgroundBitmap.ctx.fill();

 // create a Sprite using the background bitmap data
 var healthMeterBG = game.add.sprite(10, 10,
meterBackgroundBitmap);
 healthMeterBG.fixedToCamera = true;
 meters.add(healthMeterBG);

 // create a red rectangle to use as the health meter itself
 var healthBitmap = game.add.bitmapData(12, 92);
 healthBitmap.ctx.beginPath();
 healthBitmap.ctx.rect(0, 0, healthBitmap.width,

https://glitch.com/edit/#!/player-health-meter?path=game.js

healthBitmap.height);
 healthBitmap.ctx.fillStyle = '#FF0000';
 healthBitmap.ctx.fill();

 // create the health Sprite using the red rectangle bitmap data
 health = game.add.sprite(14, 14, healthBitmap);
 meters.add(health);
 health.fixedToCamera = true;
};

The code above creates a black box to act as the background and then a red box to act as the
health meter. Now have a look at the updated hitHazard part of our code (if you don't have one
you should add one);

var hitHazard = function (player, hazard) {

 if (!player.immune) {
 player.damage(10);
 updateHealthBar();
 player.immune = true;
 game.time.events.add(200, function () {player.immune = false;},
this);
 }

 if (player.body.position.x < enemy1.body.position.x) {
 player.body.velocity.x = -200;
 }
 else {
 player.body.velocity.x = 200;
 }
};

What's to stop our player from being drained of all health points in one go, when the player is
zapped by overlapping with a hazard we need to set a quick time limit where they can't get
zapped again. Let's called this time when the player is immune from harm. In the code above if
the player isn't immune - if (!player.immune) - then we zap the players' health by 10 points and
make a call to a function to update the health bar, to reduce the value a bit. We also add code to
say that the player is now immune and will stay that way for 200 miliseconds (0.2 of a second).

This time is enough to prevent this section of code running again until we can run the next
code which moves the player out of the way of the enemy. It checks to see if the player is more
to the right or to the left of the enemy using the player.body.position property, and then
changes their velocity value to bump them out of the way of the enemy. Doing this then stops
the hitHazard function from being called as the player and the enemy are no longer
overlapping.

There is also another thing we need to add to the update function in our code. We need to stop
the game player from controlling our player character when it is immune. Have a look at the
extra conditions which makes this happen. One example is show below. Be sure to update all of
them!

 if (!player.immune &&
game.input.keyboard.isDown(Phaser.Keyboard.LEFT)) {
 player.body.velocity.x = -300
 }

That's it. We hope you enjoy adding this game dynamic to your game

Follow up Resources: If you want find out more about the code for doing the maths and the
process to update the health meter then there is a more in depth look at this dynamic at the
website where the code was originally found -
https://thoughts.amphibian.com/2015/12/putting-health-meter-in-my-phaser-game.html

ADDING POLISH

Polish: Adding our Own Sound Effects
Adding our own sound effects can be a great way to bring our own creativity to a game that we
are making or altering. There are lots of fun ways to create or even record your own sounds.

https://thoughts.amphibian.com/2015/12/putting-health-meter-in-my-phaser-game.html

Your game may already play a sound when we reach a coin or hit an enemy. So in this quick
guide we first over how to replace these sounds with your own new sounds and then look at
how to create a new sound to the game when you reach a new level.

Swapping over existing Sounds

You can create your own sounds in many ways. One good online tool is ChipTone -
http://sfbgames.com/chiptone/

Play around and when you have a sound you like click on SAVE WAV to save the sound to your
computer

http://sfbgames.com/chiptone/

Now upload your sound to the assets section of your Glitch remix project you can find the assets
link on the left of your screen, after clicking on that look for the little upload button on the
main part of the page.

You can now click on the image of the uploaded sound and click on the Copy Button this will
copy the location of the image ready for you to paste it later.

Now return to your game code and change over the URL of the coin sound in the preload
section.

Going over the code

The code for a minimal example of how to add your own sounds to the game mechanic is
shown here - https://glitch.com/edit/#!/polish-add-your-own-sounds?path=game.js

First we need to add a new variable into our list of game variables at the start of our code before
any of the functions.

 var jumpNoise;

https://glitch.com/edit/#!/polish-add-your-own-sounds?path=game.js

Then let's load a jump sound into the game in the Playstate.preload function of our main
game.

 game.load.audio("jump", "https://cdn.glitch.com/80a5a58a-af34-
4348-81df-7c05260f8ceb%2Fjump.wav");

If you want to add your own sound then be sure to replace the link in this code with your own
link from your Assets section.

Next let's add this sound to the game, ready to be used. Add the following anywhere in the
Playstate.create function.

 jumpNoise = game.add.audio("jump");

Finally, we need to find where to trigger this jump sound to play. In this case, we want it to be
in our update function in the if / conditional statement which checks to see if the player is
pressing the jump key and if they are then increases the velocity to ping the player up in the
air. Find the following code in Playstate.update function and alter it by adding in the
jumpNoise.play() code as shown below.

 if (game.input.keyboard.isDown(Phaser.Keyboard.UP) &&
player.body.touching.down === true) {
 player.body.velocity.y = -300
 jumpNoise.play()
 }

Polish: Add Animation to your Character
Animating our player so it looks like it is running is made fairly easy by the Phaser framework.
If we had to start coding this whole process from scratch then we would be here a long time.
Luckily making simple animations is something that many game players want to do so we have
some good coding tools for it.

What we need to know and what we will do

To be able to do this step it would help if you knew about the following from this book;

• Understand the core structure of our game - see Building a World
• Understand Conditionals - see Adding Movement

Creating an Animated Character in Piskel

Let's use the Piskel tool to it an animated character if we want to do so. If you like the character
in the picture below then here is a link to it on the Piskel website -
https://www.piskelapp.com/p/agxzfnBpc2tlbC1hcHByEwsSBlBpc2tlbBiAgKCogPjNCgw/view

You should be able to click on Edit Sprite to see how the "run cycle" of the hero is made.

https://www.piskelapp.com/p/agxzfnBpc2tlbC1hcHByEwsSBlBpc2tlbBiAgKCogPjNCgw/view
https://en.flossmanuals.net/phaser-game-making-in-glitch/_edit/#building-a-world

There is a great tutorial on the whole process of making a running pixel art character here if
you want to go into it in detail. http://www.lessmilk.com/tutorial/pixel-art-run-cycle

Create your character by adding frames (try cloning them and altering them) and when you are
ready then export an image of your animation and follow the steps below to make it animated.
Only think about your character running right for now.

When you are happy with it then you can save it to your computer by clicking on the Export
button > PNG > Download button.

http://www.lessmilk.com/tutorial/pixel-art-run-cycle

Now upload it to the Assets part of your glitch.com project. There is information on how to do
that in the Add a Background section.

Going over the code

The code example for adding an animated character is here https://glitch.com/edit/#!/polish-
add-an-animated-player?path=game.js

To understand how this sprite sheet works, first of all we are going to add this to project in the
wrong way. Don't worry we'll fix it up quickly. In the preload function area of code, add or
replace the line of code which loads in a player image. You can copy this code to use our
example player, or you can then alter it to swap in your own.

 game.load.spritesheet("player", "https://cdn.glitch.com/5d318c12-
590d-47a1-b471-92a5dc0aae9d%2Fhero.png?1539353651099")

Now when you Show the Live page you will see the following image of lots of different version
of our hero.

https://glitch.com/edit/#!/polish-add-an-animated-player?path=game.js
https://glitch.com/edit/#!/polish-add-an-animated-player?path=game.js

We can use these different frames to create an animation in phaser. To do this we need to
change the way we are bringing this image into the game.

Again in your preload function, change your line like the one below by adding in the two extra
parameters, the numbers 36 and 42.

 game.load.spritesheet("player", "https://cdn.glitch.com/5d318c12-
590d-47a1-b471-92a5dc0aae9d%2Fhero.png?1539353651099",
 36, 42);

This brings the image in as an image 36 pixels wide by 42 high which is right for our example
but if you use your own, your image may be of a different size. For example, the default size in
Piskel is 32 pixels wide and 32 Pixels high. If you are using your own image be sure to
change those numbers.

Next to make the player seem like they are walking then we need to add some more code to tell
phaser which of the frames to use. The following frames tell phaser to use some frames when
our player is running, and frame zero when stopped so add the following to your create
function.

 player.anchor.set(0.5, 0.5);
 player.animations.add("stop", [0]);

 player.animations.add("run", [1, 2], 8, true); // 8fps looped
 player.animations.play("stop");

Two animations are created here. The first fame, frame [0] is used for the stop animation. The
next two [1,2] are used to show our player running. Depending on how many frames your
animation has you may need to change these frame numbers around. Now in the
update function, we need to add the following code to activate the walking animations when
the cursor keys are being pressed. We also need to tell the animation to stop when there is no
key being pressed. To do this add the following user-input lines anywhere in the update
function.

 if (player.body.velocity.x !== 0) {
 player.animations.play("run");
 }
 else{
 player.animations.play("stop");
 }

To explain the code above, if the player is moving left or right then the velocity will not be zero,
so we start the run animation. Otherwise, play the other animation where our character is
stopped. This works but the player is always facing the same way. To flip the player over then
add the following lines.

 if (player.body.velocity.x < 0) {
 player.scale.x = -1;
 }
 else if (player.body.velocity.x > 0) {
 player.scale.x = 1;
 }

We can see there that there isn't a flip command but setting the player body scale property to a
minus figure has that effect.

Intentionally Glitching your game can be fun. The process of flipping described above only
works neatly if what something called the Anchor point of the sprite is set to be the middle of
the sprite instead of the default value of the top left. This means that we can create an
interesting glitch in our game by adding the following line to our create function after the
player is added.

 player.anchor.set(0.5, 0.5);

Try it out in your game and see how our hero glitches out.

Optional - Adding more animations

Another way to make our player face the direction that they are moving is to create your
animation so that it has frames which point the other direction. There is a Flip tool which lets
you do that in Piskel (on the right with 2 tall triangles).

If you take this approach then you will need to create new animations - say "runleft" and
"runright" and choose the appropriate frames. They you will need to change the code above so
that instead of flipping the character

Polish: Add Soundtrack Music
Adding background music to a game gives a lot of advantages. You can really set the tone of the
kind of game you are creating.

Check the Code: what we need to know and do

The code for a minimal example of the Add a Music Soundtrack game polish element is shown
here -
https://glitch.com/edit/#!/add-polish-soundtrack?path=js/game.js

We can add a sound track to our game to act as a bit of background music or a sound effect
while we play. For this demo let's just add a noise that lasts for 2 seconds.

To do this we load a new sound to our project in preload with the following linke

https://glitch.com/edit/#!/add-polish-soundtrack?path=js/game.js

 game.load.audio('backgroundnoise' ,
'https://cdn.glitch.com/04f51d70-ab26-4960-8e87-12f2aa251cff
%2Fbackground_noise.wav');

Then we can create a variable with that loaded noise with the following lines in our
playState.create function

 var backgroundNoise = game.sound.add("backgroundnoise", 1, true);
 backgroundNoise.play();

The game.sound.add() function here has three parameters.

1. The "backgroundnoise" here is the name of the sound as defined in preload
2. The number 1 here is the volume of the sound. To make it lower you could halve the

volume by changing it to 0.5 for example.
3. the true value here says if we should loop this sound or not, false plays it once, true

means it does play over and over again.

The default for the volume parameter is level 1 (100%), and the default value for loop is false, so
it only plays once.

So in this case we have to include a value for the volume parameter if we want to set the third
loop parameter to true or the function will get confused.

You may notice a glitch! Adding a background track in this way may result in multiple versions
of your tune being played if you get killed. To avoid this add the following line before the two
lines adding and playing your audio in playState.create.

 game.sound.stopAll();

This will stop the multi versions of your song playing at the same time.

Polish: Animate Sprite when Zapped
Death and killing seem like strong words so let's talk about getting zapped. Being zapped loses
it's sting when you can be reborn so easily. But to give the sense of dying rather than just
disappearing we can add an animation to our player or enemy sprites so the gamer really know
what is going on.

Check the Code: what we need to know and do

Better death here needs us to alter the function called when player and enemy overlaps. Let's
concentrate on animating the enemy, we need to change the sprite animation but also add a
delay into the process of restarting the game so we can see the animation play out. The code for
a minimal example of the Animate Sprite when Zapped game polish element is shown here -
https://glitch.com/edit/#!/add-polish-animate-zapped-sprite?path=game.js

Going over the code:

First we need to make sure we are adding an an image with more than one frame in it as an
animation in our playState.preload area. Be sure to remove any other mentions of a player
here. Here is an example.

 game.load.spritesheet("player", "https://cdn.glitch.com/21c64338-
5965-4de0-a478-2af819796de2%2Fpacmansprites.png",16,16);

We need to add a die animation in the playState.create part of the code after we have added
the player to the game. This code does it.

 player.animations.add('chomp', [0,1,2], 12,true);
 player.animations.add('die', [3, 4, 5,
6,7,8,9,10,11,12,13,14,15,16], 12);
 player.animations.play('chomp');

Now have a look at the hitHazard function;

https://glitch.com/edit/#!/add-polish-animate-zapped-sprite?path=game.js

 var hitHazard = function (player, enemy) {
 splatNoise.play();
 enemy.kill();
 player.body.velocity = 0;
 player.animations.play('die');
 game.input.keyboard.disabled = true;
 game.time.events.add(1200, restart, this);
 };

Here a noise is played and then this code gets rid of the enemy the player is stopped by setting
velocity to 0 and the keyboard input is turned off so that we can't move the player around
anymore. The animation is now played to show that the player is well and truly zapped.

Then we use a function for a timed event to restart the game. To see that animation we have
to delay calling the restart function. In this case we are delaying for 1200 miliseconds which is
just over a second.

Lastly as we turned off the keyboard input. We need to turn it back on again in our restart
function.

 var restart = function () {
 game.input.keyboard.disabled = false;
 currentLevel = 1;
 game.state.start("play", true, false, currentLevel);
 };

That's it. We hope you enjoy adding this element of polish to your game to animated a zapped
sprite.

Polish: Screen Shake

Polish: Screen Shake when Zapped

Rather than just disappearing we can add an animation to the whole screen to give our game
player feedback that something bad has happened. We can do this by shaking the screen.

Check the Code: what we need to know and do

Better death here needs us to alter the function called when player and enemy overlaps. Let's
concentrate on animating the enemy, we need to change the sprite animation but also add a
delay into the process of restarting the game so we can see the animation play out. So we'll need
the following background knowledge;

• Collision detection using overlap() function- see Adding a Reward

The code for a minimal example of the Shake Screen when Zapped game polish element is
shown here - https://add-polish-shake-screen.glitch.me/

Going over the code:

Have a look at an updated hitHazard function - if you have sounds added to your game etc, be
sure not to remove those. Just be sure to copy and add the lines in bold;

var hitHazard = function (player, enemy) {
 player.kill();
 splatNoise.play();
 game.camera.shake(0.05, 500);
 game.time.events.add(1000, restart, this);
};

We just need to add a line about shaking the camera position of the whole game into the
hitHazard function.

https://add-polish-shake-screen.glitch.me/
http://write.flossmanuals.net/learn-javascript-with-phaser/adding-a-reward/

You can see that to make this work effectively in our game we replaced the line calling
restart(); in the playState.hitHazard function with a line adding a time event to wait for one
second before restarting the game.

Bonus: If you don't like the way everything shakes here then the shake effect can be done only
on limited sprites or groups for a demo of that see here. https://glitch.com/edit/#!/add-polish-
shake-sprites-only?path=game.js

Polish: Explosions using Particles
We are going to make our death more dramatic by using particles to make it look like our
player explodes.

Check the Code: what we need to know and do

Adding an explsion uses the following knowledge which we covered in another chapter;

• Collision detection using overlap() function- see Adding a Reward

The code for a minimal example of the Explosions using Particles game polish element is shown
here - https://glitch.com/edit/#!/add-polish-explosions-using-particles?path=game.js

https://glitch.com/edit/#!/add-polish-explosions-using-particles?path=game.js
http://write.flossmanuals.net/learn-javascript-with-phaser/adding-a-reward/
https://glitch.com/edit/#!/add-polish-shake-sprites-only?path=game.js
https://glitch.com/edit/#!/add-polish-shake-sprites-only?path=game.js

Going over the code:

We make the explosion make it grey as a tribute to Nintendo's censoring of Mortal Kombat
turning red blood into grey sweat to make the violence less graphic!.

To do this we import an image of a grey pixel block and name it sweat which is used by a new
function which sets up a "particle emitter". These little blocks will be the particle explode out of
this emitter.

var setParticles = function() {
 sweat = game.add.emitter(0, 0, 20);
 sweat.makeParticles('sweat');
 sweat.setYSpeed(-150, 150);
 sweat.setXSpeed(-150, 150);
 sweat.gravity = 0;
};

This code creates a particle emitter, which is suitable as a base for our explosion. The values
(0,0,20) mean that the explosion will start from the centre and and will have a maximum of 20
particle blocks in the explosion.

Add the following code at the start of the hitHazard function to start the explosion.

 sweat.x = player.x;
 sweat.y = player.y+10;
 sweat.start(true, 300, null, 20);

This sets up where the explosion will happen, which is a bit above where the player is, and
starts the process.

To make this work effectively in our game we will also need to replace the line calling restart();
in the hitHazard function with the following line to wait for one second before restarting the
game.

 game.time.events.add(1000, restart, this);

Understanding the code

start(true, lifespan=0, null, total) - true, means the emitter is an explosion type, 300 is how long
it will last, null is if it will repeat so here it won't it's a one off, and 20 is the number of particles
that will make up the explosion. .

There is full information in the documentation below:

https://photonstorm.github.io/phaser-ce/Phaser.Particles.Arcade.Emitter.html

https://photonstorm.github.io/phaser-ce/Phaser.Particles.Arcade.Emitter.html#start

https://photonstorm.github.io/phaser-ce/Phaser.Particles.Arcade.Emitter.html#start
https://photonstorm.github.io/phaser-ce/Phaser.Particles.Arcade.Emitter.html

GAME SPACE

Game Space: Add your own Background

Adding our own background can really start to make the game our own. You can be really
creative here by using craft materials or drawing your background with crayon or paint.

In this tutorial, we look at creating a pixel art background and importing it into our game.

If you want a quick link to the code to do this you can look at this example: -
https://glitch.com/edit/#!/polish-add-background-image?path=game.js

What we need to know and what we will do

To be able to do this step it would help if you knew about the following from this book;

• Understand the core structure of our game - see Building a World

This guide will help you with the following stages; reate an image for your background,
exported that image as a suitable size, upload an image of your background to your project, add
the code to add background.

https://glitch.com/edit/#!/polish-add-background-image?path=game.js

Creating and Uploading your Images

Create a background in piskel. Create a Sprite. Then Resize to 55 pixels wide to 40 pixels high.

Draw a simple background and click on Export image button on the right and click on the PNG
tab then Spritesheet file explort > Download. Move the size slide to be x10 so the image will be
550 by 400 wide.

Now upload your sound to the assets section of your Glitch remix project you can find the assets
link on the left of your screen, after clicking on that look for the little upload button on the
main part of the page.

You will then be able to get the address of the image by clicking on it and clicking the Copy
button.

Adding our new code:

You can open the code for a minimal example of the code to add a background image is here -
https://glitch.com/edit/#!/polish-add-background-image?path=game.js

We need to load a background image to be ready for our game to use by adding a line like the
following to our preload function

 game.load.image("background", "https://cdn.glitch.com/07341419-e9df-
clouds-h.png");

Then add the following the create part of the code

 var background = game.add.sprite(0, 0, "background");
 background.width = 550;
 background.height = 400;

If you are not happy with the width or height of your background you can make alterations
here.

That's it. We hope you enjoy adding this element of polish to your game

https://glitch.com/edit/#!/polish-add-background-image?path=game.js

Game Space: Add Game Over Screen
The game mechanic of jumping on enemies to get rid of them has been made very popular by
Mario games. It is a great way to use the jumping dynamic in a creative way. We can use the
same technique as many Mario games use to do this. An enemy will kill our player unless our
player is falling when they make contact.

Check the Code: what we need to know and do

Our mechanic relies on us being able to check if we are jumping on our enemy. We will do this
by checking to see if our player is on the way up or coming down from a jump.

To be able to do this step it would help if you knew about the following from this book;

• Understand how our game structure works - see Understanding our Game Structure

Going over the code:

The code for a minimal example of the Game Over screen is shown here -
https://glitch.com/edit/#!/game-over-state-add?path=game.js
Even the most simple video / computer games have several states, say an welcome menu, a play
state, a win state and a game over / you lose state. We can add these different states into our
game. At the moment we only have one state our "Play" state. In our code this is an object called
playState.

At the moment, if you win or if you lose the game restarts.

https://glitch.com/edit/#!/game-over-state-add?path=game.js

To solve that let's add code which recognises when you have been zapped by an enemy and
shows a game over screen. Let's keep the game over screen very simple and just add some
Game Over text and a Timer to restart the main play state after 3000 miliseconds (3 seconds).

Add the following to your code very close to the very end of your code just before the end lines
where you have the game.add.state line.

 var gameOverState = {};

 gameOverState.create = function () {
 this.gameoverText = game.add.text(10,10, "Game Over", "0:00");
 this.gameoverText.fill = "#ffffff";
 this.time.events.add(3000, this.restart, this)
 };
 gameOverState.restart = function(){
 game.state.start('play');
 };

This creates a completely new state with its own functions. We only need create and restart
here. The create function add some text to the screen and then after 2 seconds calls the restart
function of this new state. The restart function here is is similar to our normal one it just
restarts the other play state.

Towards the the end of our project code you will see a line containing game.state.add for our
play state, Just after that you can add one for game over state

game.state.add("play", playState);
game.state.add("gameover", gameOverState);
game.state.start("play");

We also need to change what happens when the player hits the hazard to indicate it is "game
over". If you are writing your code from scratch, then replace the line in the hitHazard
function which reads game.state.start("play"); with the following line which is going to start
our game over state;

var hitHazard = function () {
 player.kill();
 game.state.start("gameover");
};

We you may well want to create two more states, one for an opening scene or starting menu
called startState and another called winState for if you win the game. We haven't written or
added these state objects to our code here. But you can follow the same pattern to see how they
might be implemented.

There is a chapter specifically looking at creating a starting scene too - see Adding a Cut Scene.

Game Mechanic: Extending the Game Size
The game mechanic or rather element of changing the space the player can move around in is
essential to many platform games. Let's look at how we can extend our world so that when our
player starts to move towards the edges, the world scrolls to reveal more space.

Check the Code: What we need to know and do

To make this work we need to do three main things.

• increase the size of our world size without increasing the screen size
• set up a "camera" to follow our player as they move

The code for a minimal example of the Extending the Game Size is shown here -
https://glitch.com/edit/#!/game-mechanic-extend-game-world?path=js/game.js

Going over the code:

First note that we should add a new variable var background at the start of our code. Then have
a look at some key code in the create function;

 game.world.setBounds(0, 0, 1100, 400);

We also set the bounds of the world to be wider than the game size created when we created
the game object. Here we have a width of 1100, you can change this to experiment with bigger
or smaller worlds.

To make the focus of the game follow the player, so that for the most part the player stays in the
centre of the screen, we set a camera to follow the player and for the background to also move
with along with the camera

 game.camera.follow(player);

Finally if you are using our grid game template then you will need to make the design of the
game bigger. Have a look at the code example above for a game which has done that. Or you can
just play around.

If you want to have a moving background image you can use a tileSprite. There are more details
on using tileSprites including a nifty tip right at the end to use a parallax effect in a chapter
here 1.

That's it. We hope you enjoy adding this game dynamic to your game to extend your game size.

1. https://docs.idew.org/video-game/project-references/phaser-coding/tilesprite-
scrolling

Game Space: Scaling our Sprites
We can make our sprites appear bigger on our web page. This may be useful is case you just
want to change how they look, but it can also make for some interesting changes in game play
too as this examples shows.

https://docs.idew.org/video-game/project-references/phaser-coding/tilesprite-scrolling
https://docs.idew.org/video-game/project-references/phaser-coding/tilesprite-scrolling
https://glitch.com/edit/#!/game-mechanic-extend-game-world?path=js/game.js

Check the Code: what we need to know and do

The code for a minimal example of the Scaling our Sprites game is shown here -
https://glitch.com/edit/#!/grooow-examples-mechanic?path=js/game.js

Going over the code:

Have a look at our code you will notice the following lines in the PlayState.create function ;

 player.body.gravity.y = gravity;
 player.scale.setTo(0.7);
 player.anchor.setTo(0.5,0.5);

To make our game more interesting here we'll start with the player a bit smaller by setting the
scale to be 70 percent, i.e. 0.7 rather than 1. As we are going to change the size later we also need
to change the anchor of the sprite to avoid a jumping effect on resizing.

 var takeCoin = function (player, coin) {
 coin.kill();
 winNoise.play();
 player.scale.setTo(player.scale.x * 1.2);
 player.body.gravity.y += 200;
 };

To make out player bigger the scale is increased by multiplying it by 1.2. At the same time, the
level of gravity is increased as well to give the impression that our player sprite weighs more
too.

https://glitch.com/edit/#!/grooow-examples-mechanic?path=js/game.js

You can see that this process as well as changing the look can also change the way our game
plays.

Game Space: Adding Levels
To allow our game to be playable more than one screen and keep the player coming back for
more we can add levels get harder and harder. Here we will add the ability to use more than
one level layout and have control over where we place our enemies, platforms and rewards
(coins). We will do this in two ways. Firstly we will create separate functions to load those
elements, and then we'll explore a way to load in platforms and coins to collect from data
objects in the json format.

Check our code: what we need to know and do

There is some background knowledge in this book that will be useful for us in getting this
mechanic to work;

• Adding Sprites in Groups - see Create a Game Space
• Working with Loops - see Adding a Reward
• Have a good grip of how all our code fits together - see Understanding our Game

Structure

http://write.flossmanuals.net/learn-javascript-with-phaser/adding-a-reward/
http://write.flossmanuals.net/learn-javascript-with-phaser/create-a-game-space/

Going over the code:

The code for a minimal example of the code for adding levels in a simple way here-
https://glitch.com/edit/#!/gamespace-more-levels-simple?path=js/game.js

Note this global variable at the start of our code outside of any particular function. It is located
here as it needs to be used by more than one function;

 var currentLevel = 1;

This currentLevel variable keeps a track of what level we are on. It is set to 1 to start off with.
Now in the create function - find the section where you design your levels using grids. Copy the
formatting of levels one to three, to create a new level4 variable. This will look like the code
below.

 var level4 = [
 " ",
 " ",
 " ",
 " ",
 " ",
 " ",
 " ",
 " ",
 " ",
 " ",
 " o",
 "xxxxxxxxxxxxxxxxx"
];

Next we also need to add another option to the section where the code finds out what level we
are on and then sends that level to the loadLevel function to make the coins, platforms and
enemies appear on the screen. Add this code to that section.

 } else if (currentLevel === 4) {
 loadLevel(level4);
 }

We can keep adding more levels and using this way of designing them to add challenge to our
game.

https://glitch.com/edit/#!/gamespace-more-levels-simple?path=js/game.js

Having more control - Adding our different kinds of coins / enemies / platforms

When we use the grid layout in this way there are limits in the way we use it. For example if we
want to create a larger enemy than 32 pixels wide or high then we won't be able to do it well
using this grid.

We have some options for how to overcome this limit. One way is to get rid of this grid
completely and to design our levels from scratch, another is to keep the grid but also to add in
our own elements to it.

Let's take the example of adding our own larger, or moving enemy. We can follow instructions
for how to create one in this chapter - Adding a moving enemy.

In short we add 4 lines to our create function. If we are using our Grid Game Template, this has
the side effect of making that moving enemy appear in the same place on every level. So to
avoid that happening we will add the same code but we will add it only to level 1 by placing it in
the following location.

 if (!currentLevel || currentLevel === 1) {
 loadLevel(level1);
 // add extra code for just level one here

 var enemy1 = game.add.sprite(370, 320, "enemy");
 enemies.add(enemy1);
 var tween1 = game.add.tween(enemy1);
 tween1.to({x:170, y: 320}, 2000, null, true, 0,-1,true);

We can see here that this will only appear on the first level.

We can now add our own moving enemies, or special power ups and custom size platforms,
coins or hazards for each level.Have fun with this!

Other ideas to extend this mechanic

Other ideas to extend this mechanic could include

• Adding a Game Over state - see Understanding our Game Structure

• Loading platform and coin data more efficiently using Json - see Add Level Data with
Json

That's it. We hope you enjoy adding this game element to your game.

Game Space: Keys and Doors
The game mechanic of collecting keys to be able to open doors to enter other spaces is well used
in platform games to increase a sense of adventure. Let's look at one way to do this. We draw on
the code of a similar tutorial here by Belen Albeza.

Check the code: what we need to know and do

There is some background knowledge in this book that will be useful for us in getting this
mechanic to work - adding More levels - Game Mechanic: Adding Levels

Going over the code:

The code for a minimal example of the Keys and Doors game mechanic is shown here -
https://glitch.com/edit/#!/key-and-doors-grid?path=js

Make sure you have or add these variables at the start of our code that are located outside of
any one function as they are needed by more than one function.

 var hasKey = false;
 var key;
 var door;

In the playState.preload function we will need to load some images for our keys and doors.
Here are two lines which you can copy and use while testing. You can replace these images with
your own.

https://glitch.com/edit/#!/key-and-doors-grid?path=js
http://write.flossmanuals.net/learn-javascript-with-phaser/adding-other-levels/
https://mozdevs.github.io/html5-games-workshop/en/guides/platformer/win-condition/

 game.load.image("key", "https://cdn.glitch.com/5d318c12-590d-47a1-
b471-92a5dc0aae9d%2Fkey.png");
 game.load.spritesheet("door2, "https://cdn.glitch.com/5d318c12-590d-
47a1-b471-92a5dc0aae9d%2Fdoor.png", 42, 66);

Then we will create a key and door for our first level. Add the following code to our if statement
in the playState.create function which controls which level is loaded.

 if (!currentLevel || currentLevel === 1) {
 loadLevel(level1);
 // add extra code for just level one here
 key = game.add.sprite(100,25,"key");
 door = game.add.sprite(20,260,"door");
 door.animations.add("open", [1, 2], 8); // 8fps

Then when the play is happening. We want to set up overlap conditions in our
playState.update function for player and keys and doors.

 game.physics.arcade.overlap(player, key, hitKeys);
 game.physics.arcade.overlap(player, door, hitDoors);

We then create new functions mentioned in these overlap statements. Create these functions
after your update function in your code.

In hitKeys we want to kill off the key and set our hasKey variable to true, ready to open the
door.

var hitKeys = function (player, key) {
 key.kill();

 hasKey = true;
};

For the hitDoor function we need to check to see if the player has already picked up the key, as
we don't want anything to happen if that is not the case, or if they haven't collected all the
coins yet too.

var hitDoors = function (player, door) {
 if (hasKey === true && coins.total === 0){
 door.animations.play("open");
 hasKey = false;
 player.kill();
 game.time.events.add(1000, nextLevel, this);
 }
};

If the player does have the key then we want to play the animation of the door opening, then
reset the value of hasKey as we don't want that to continue to the next level, make the player
disappear, and then call the next level function after one second so that we get to see the door
opening.

We also need to comment out the code which would allow the player to progress to the next
level if they have just collected all the coins.

 // MAKE SURE TO COMMENT OUT OR REMOVE THE FOLLOWING CODE
 //if the player has collected all the coins move them on to the
next level
 // if (coins.total === 0) {
 // nextLevel();
 // }

That's it. We hope you enjoy adding this game space element to your game to allow the use of
keys and doors to encourage exploration.

Polish: Create a Cut / Opening Scene
Cut scenes are the little bits between game levels. In one classic early cut scene Pac Man is
chase off the screen persued by a ghost but then returns having grown in size to chase the ghost
back. These scenes act as an introduction or break up game play and serve other purposes like
"scenes could be used to show conversations between characters, set the mood, reward the
player, introduce new gameplay elements, show the effects of a player's actions, create
emotional connections" etc 1.

Check your Code: What we need to know and do

To create cut scenes we'll be learning more about animation using tweens and timing. You can
check your code against our completed example here - https://glitch.com/edit/#!/cut-scene-
tween-demo

If we are working as a team,then this is also a great project for someone who is drawn to the art
and narrative side of game to sink their teeth into.

To follow this tutorial you can start with this starter project which is the base our the hands on
example. https://glitch.com/edit/#!/cut-scene-starter?path=game.js:15:0

This project has a similar structure to the game we have been working on but it is going to be a
different object called startState (as well as a minimal playState). Have a look at the code to
see the familar pattern of preload, create and update functions.

Adding Timer Events

To tell a story using a cut scene we are going to move our character and get them to say things
one after the other. To do this we are gong to have to understand time events to say when
something will happen. Add the following code to the create: function to add our characters to
the game but set the visibility to be false so it don't appear right away.

 player = game.add.sprite(20, 215, "player");
 player.animations.add("right", [1, 2, 3, 4], 6, true);
 player.scale.setTo(1.5);
 player.visible = false;

https://glitch.com/edit/#!/cut-scene-starter?path=game.js:15:0
https://glitch.com/edit/#!/cut-scene-tween-demo
https://glitch.com/edit/#!/cut-scene-tween-demo

One second after it loads after our game loads we want to show the image of our player which is
now a space person. To do this we will add a thing called a time event to the game. Add this at
the end of the create function

 game.time.events.add(1000, this.playerShow, this);

This function, at a very simple level like this, uses three parameters;

1. the time when you want something to happen
2. the name of the function you want to run
3. the context you want the function called in (don't worry to much about this bit it's

normally just this)

We now need to write the playerShow function and add it to the startState object.

 startState.playerShow = function() {
 player.visible = "true";
 };

Run the code by clicking on Show Live to see the result

Adding Movement via Tweens

So far so good. Now let's get this player to move. We'll repeat the process above by adding a
timed event which calls a new function, and then writing this new function which will move
our player. Add the following line to create function

 game.time.events.add(2000, this.playerMove, this);

This will start the player moving two seconds after the start of this startState.

Now let's write this function to use a Tween to move our player sprite.

 startState.playerMove = function () {
 var tween = game.add.tween(player);
 tween.to({x: 70, y: 215}, 1000, null, true, 0, 0, false);
 player.animations.play("walk");
 };

Here we create a tween and set the tween to parameters, this process is outlined in the hazards
and enemies chapter of this book.

We also start the player animation of our character walking.

Relative Positioning and Text

Now let's make our player say something. We'll repeat the same process as above.

 game.time.events.add(3000, this.speech1, this);

And then write a function which will show a speech bubble graphic as described in the section
below.

 startState.speech1 = function () {
 player.animations.stop();
 var speech1 = game.add.sprite(player.x - 70, player.y - 50,
"speech1");
 };

Hands On - Creating More Graphical Assets

Part of the fun o of making your own games is to create your graphics and characters. There are
many tools to do this available online for free download, and some which allow you instant
creativity by allowing you to work in your web browser. Here are some of the tools we use.

Creating Pixel Characters with Piskel: We have already played with Piskel to create our own
characters. You can create all sorts of pixel art for your cut scene using this tool.

http://piskelapp.com/

Creating Speech Bubbles with Wigflip: This fun website does a good job of creating simple
and quick pixel art speech bubbles

http://wigflip.com/ds/

Creating general text at Textcraft: This is a fantastic and very flexible site for creating funky
looking game text graphics. You must try it.

https://textcraft.net/

https://textcraft.net/
http://wigflip.com/ds/
http://piskelapp.com/

Game Mechanic: Adding Levels using Json
Here we will add the ability to use more than one level layout and have complete control over
where we place our enemies, platforms and rewards (coins). We'll explore a way to load in
platforms and coins to collect from data objects in the JSON format.

Going over the Code

The code for a minimal example of the code for adding levels using JSONjson data format here -
https://glitch.com/edit/#!/game-mechanic-more-levels?path=game.js-
https://glitch.com/edit/#!/game-mechanic-more-levels?path=game.js

Create a variable in the list of global variables at the start of our code called level data

 var leveldata;

Now create some data in the JSON style format. We could have these in external files but we'll
keep them in our game.js file to reduce the complexity of this example. All we need to know
right now is we are using this approach to store the data for where our coins and platforms are.
The JSON format is explained in more detail here
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON.

We can have a look at our entry for level one below.

var level1 = {"platforms":[{"image":"ground","x":0,"y":325},
{"image":"grass:4x1","x":150,"y":240},
{"image":"grass:4x1","x":250,"y":160}],
 "coins":[{"image":"coin","x":0,"y":225},
{"image":"coin","x":150,"y":200}]

This data contains two main sections, one for platforms and one for coins. Within those parts,
there is an entry for the image name (which was defined in preload), and where it will appear
on the screen. There is one for each level we want.

The next relevant bit of code is to choose which level

 if (!currentLevel || currentLevel ===1){
 leveldata = level1;
 }
 else if (currentLevel === 2){
 leveldata = level2;
 }

When generating the game area in creating we have added two loops to loop through each of
lists of sprites, add them to the screen and add them to the relevant group.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
here.
here.

 for (var i = 0; i < leveldata.platforms.length; i++) {
 var platform = platforms.create(leveldata.platforms[i].x,
leveldata.platforms[i].y, leveldata.platforms[i].image);
 platform.body.immovable = true;
 var coin =coins.create(leveldata.coins[i].x, leveldata.coins[i].y,
leveldata.coins[i].image);
 }

That's it. We hope you enjoy adding this game element to your game.

	Table of contents
	OPENING SCENE
	JUMPING RIGHT IN
	CORE GAME PARTS
	HOW OUR GAME FITS TOGETHER
	GAME MECHANICS
	ADDING POLISH
	GAME SPACE

	OPENING SCENE
	Introduction
	What this Book is and isn't
	Playful group learning processes
	Making Games on the Web using Glitch
	Making Games using Phaser
	Why Javascript for beginners?
	About the Phaser Community and Games

	JUMPING RIGHT IN
	Jumping Right In
	Getting started with the Glitch.com Codeplayground
	
	Have a play with a simple platform game
	Create your own characters
	Extra Activity

	Debugging your code in Glitch.com

	Choose your own Adventure
	Open World vs On Rails Learning
	What makes up a Game?
	Our own Framework for Game Elements

	Adding / Changing Game Mechanics
	Adding Game Polish
	Changing Game Space
	Go On Choose your own Adventure
	Meeting yourself in the middle

	CORE GAME PARTS
	Building a World
	Creating a Game Area
	Adding a Player to the Game Area
	Adding Gravity to our player
	Check your Code
	Understanding Sequencing
	Variables and the var keyword
	Using functions and parameters

	Create a Game Space
	Creating a Group for our Platforms and Ground
	Debugging Jumping
	Checking our Code
	More on conditionals

	Adding Movement
	Moving our player around the screen
	Make it easy to control our speed
	Checking our Code
	Understanding if statements / Conditionals:

	Adding a Reward
	Creating our Coin
	Making the coins disappear
	Checking our Code
	Loops and Iterating
	Making and calling functions

	Hazards and Enemies
	Adding an Animated Hazard
	Restarting our Game
	Check your Code

	HOW OUR GAME FITS TOGETHER
	Understanding our Game Structure
	How the code of the two approaches is similar and different
	How the code is similar
	Adding Sounds
	Adding Levels
	Navigating Levels

	Getting ready to Cut and Paste our Code Patches
	Getting Started adding new Game Elements

	GAME MECHANICS
	Game Mechanic: Add Moving Enemies
	What we need to know and what we will do
	Create an image for your Enemy and import it to your project
	Going over the code
	Taking it Further

	Game Mechanic: Jumping on Enemies
	What we need to know and what we will do
	Going over the code:

	Game Mechanic: Add a Countdown Timer
	What we need to know and do
	Going over the code:

	Game Mechanic: Longer Jumps if Holding Jump Down
	What we need to know and do
	Going over the code:

	Game Mechanic: Smaller Sprite Collision Boxes
	Check the Code: what we need to know and do
	Going over the code:
	Collision boxes and Hazards

	Game Mechanic: Extra Lives
	What we need to know and what we will do
	Create an image for your Lives Indicator and import it to your project
	Going over the code:
	Other ideas to extend this mechanic

	Game Mechanic: Player Health Meter
	What we need to know and what we will do
	Going over the code:

	ADDING POLISH
	Polish: Adding our Own Sound Effects
	Swapping over existing Sounds
	Going over the code

	Polish: Add Animation to your Character
	What we need to know and what we will do
	Creating an Animated Character in Piskel

	Going over the code
	Optional - Adding more animations

	Polish: Add Soundtrack Music
	Check the Code: what we need to know and do

	Polish: Animate Sprite when Zapped
	Check the Code: what we need to know and do
	Going over the code:

	Polish: Screen Shake
	Polish: Screen Shake when Zapped
	Check the Code: what we need to know and do
	Going over the code:

	Polish: Explosions using Particles
	Check the Code: what we need to know and do
	Going over the code:

	GAME SPACE
	Game Space: Add your own Background
	What we need to know and what we will do
	Creating and Uploading your Images
	Adding our new code:

	Game Space: Add Game Over Screen
	Check the Code: what we need to know and do
	Going over the code:

	Game Mechanic: Extending the Game Size
	Check the Code: What we need to know and do
	Going over the code:

	Game Space: Scaling our Sprites
	Check the Code: what we need to know and do
	Going over the code:

	Game Space: Adding Levels
	Check our code: what we need to know and do
	Going over the code:
	Having more control - Adding our different kinds of coins / enemies / platforms
	Other ideas to extend this mechanic

	Game Space: Keys and Doors
	Check the code: what we need to know and do
	Going over the code:

	Polish: Create a Cut / Opening Scene
	Check your Code: What we need to know and do
	Adding Timer Events
	Adding Movement via Tweens
	Relative Positioning and Text
	Hands On - Creating More Graphical Assets

	Game Mechanic: Adding Levels using Json
	Going over the Code

